

Learning ASP.NET 2.0 with AJAX

Other Microsoft .NET resources from O’Reilly

Related titles ASP.NET Cookbook™

Essential Silverlight

Learning ASP.NET

Learning JavaScript

Programming ASP.NET

Programming ASP.NET AJAX

Programming C#

.NET Books
Resource Center

dotnet.oreilly.com is a complete catalog of O’Reilly’s books on
.NET and related technologies, including sample chapters and
code examples.

ONDotnet.com provides independent coverage of fundamental,
interoperable, and emerging Microsoft .NET programming and
web services technologies.

Conferences O’Reilly & Associates bring diverse innovators together to nur-
ture the ideas that spark revolutionary industries. We specialize
in documenting the latest tools and systems, translating the
innovator’s knowledge into useful skills for those in the
trenches. Visit conferences.oreilly.com for our upcoming events.

Safari Bookshelf (safari.oreilly.com) is the premier online refer-
ence library for programmers and IT professionals. Conduct
searches across more than 1,000 books. Subscribers can zero in
on answers to time-critical questions in a matter of seconds.
Read the books on your Bookshelf from cover to cover or sim-
ply flip to the page you need. Try it today for free.

Learning ASP.NET 2.0
withAJAX

Jesse Liberty, Dan Hurwitz, and BrianMacDonald

Beijing • Cambridge • Farnham • Köln • Paris • Sebastopol • Taipei • Tokyo

Learning ASP.NET 2.0 with AJAX
by Jesse Liberty, Dan Hurwitz, and Brian MacDonald

Copyright © 2007 Jesse Liberty and Dan Hurwitz. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (safari.oreilly.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: John Osborn
Production Editor: Rachel James
Production Services: Octal Publishing, Inc.

Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Jessamyn Read

Printing History:

September 2007: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Learning ASP.NET 2.0 with AJAX, the image of a pelagic stingray, and related trade
dress are trademarks of O’Reilly Media, Inc.

Microsoft, .NET logo, Visual Basic .NET, Visual Studio .NET, and Windows are registered trademarks
of Microsoft Corporation.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc. was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors
assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

This book uses RepKover™, a durable and flexible lay-flat binding.

ISBN-10: 0-596-51397-6

ISBN-13: 978-0-596-51397-9

[M]

http://safari.oreilly.com
mailto:corporate@oreilly.com

This book is dedicated to truth tellers and rational

thinkers; our nation depends on them,

especially now.

vii

Table of Contents

Cheat Sheets . xiii

Preface . xv

1. Getting Started . 1
Hello World 2
Creating a New Web Site 2
Creating HelloWorld 6
Making the HelloWorld Web Site Interactive 8
What You Just Did 13
Summary 13
Brain Builder 15

2. Building Web Applications . 17
Mastering Web Site Fundamentals 17

The Page 17

Controls 19

Code-Behind Files 22

Events and Postbacks 22

Synchronous and Asynchronous Postbacks 23

The Page Load event and synchronous postback 26

Adding asynchronous postbacks 29

Controls 31
Organizing the Properties Window 32

Finding properties with IntelliSense 32

Basic Controls 33

viii | Table of Contents

Creating Tables 36

Setting Properties 39

Selection Controls 40

Panels 41

Selection Controls 41

Adding controls with the Item editor 42

Adding items in Source View 43

More Selection Controls 46

Displaying Text 48

Images 51

Links 52

LinkButtons 53

Source Code 54
Summary 59
Brain Builder 61

3. Snappier Web Sites with AJAX . 65
Take a Walk on the Client Side 65
ScriptManager 67
Extending Controls with the Control Toolkit 72

TextBoxWaterMarkExtender 72

PopupControlExtender 76

CollapsiblePanelExtender 82

Source Code Listing 87
Summary 92
Brain Builder 93

4. Saving and Retrieving Data . 96
Getting Data from a Database 97

Binding Data Controls 97

Create a Sample Web Page 99

Using a DataSource Control 99

“Pay No Attention to That Man Behind the Curtain” 105

Using the GridView Control 107

Auto-Generated Code 109

Adding Insert, Update, and Delete Statements 112

Table of Contents | ix

Displaying and Updating the Data 116
Take It for a Spin 118

Modifying the Grid Based on Events 119

Selecting Data from the GridView 123

Passing Parameters to the SELECT Query 125

Source Code Listings 128
Summary 136
Brain Builder 137

5. Validation . 142
Validation Controls 143
The RequiredFieldValidator 144
The Summary Control 152
The Compare Validator 154

Checking the Input Type 156

Comparing to Another Control 157

Range Checking 159
Regular Expressions 160
Custom Validation 162
Summary 164
Brain Builder 166

6. Style Sheets, Master Pages, and Navigation . 170
Styles and Style Sheets 170

Cascading Style Sheets 171

Inline Styles 171

Pros and cons 173

Document-Level Styles 173

Pros and cons 174

External Style Sheets 175

Master Pages 180
Creating a Master Page 182

Adding Content Pages 184

Using Nested Master Pages 187

Changing the Master Page at Runtime 191

x | Table of Contents

Navigation 196
Buttons and HyperLinks 196

Menus and Bread Crumbs 200

Site Maps 203

Using Sitemaps 206

TreeView 206

Customizing the look and feel of the TreeView 207

Replacing the TreeView with a menu control 208

Accessing site map nodes programmatically 209

Bread Crumbs 212

Summary 214
Brain Builder 217

7. State and Life Cycle . 221
Page Life Cycle 221
State 227

View State 228

Session State 238

Application State 244

Summary 245
Brain Builder 247

8. Errors, Exceptions, and Bugs, Oh My! . 250
Creating the Sample Application 250
Tracing 253

Page-Level Tracing 254

Inserting into the Trace Log 256

Debugging 259
The Debug Toolbar 260

Breakpoints 261

Setting a breakpoint 261

Breakpoint window 261

Breakpoint properties 262

Breakpoint icons 265

Stepping Through Code 266

Examining Variables and Objects 268

Debug Windows 268

Table of Contents | xi

Immediate window 268

Locals window 270

Watch window 270

Call Stack window 271

Error Handling 271
Unhandled Errors 272

Application-Wide Error Pages 273

Page-Specific Error Pages 276

Summary 278
Brain Builder 280

9. Security and Personalization . 282
Forms-Based Security 282

Creating Users with the WAT 283

Managing Users Programmatically 289

Creating user accounts 289

Creating a welcome page 290

Creating a login page 293

Roles 295

Restricting Access 298

Testing for login status 300

Testing for role-based authentication membership 300

Personalization 304
Profiles 304

Simple data types 304

Complex data types 310

Anonymous Personalization 314

Migrating anonymous data to an actual user’s record 320

Themes and Skins 321
Create the Test Site 322

Organize Site Themes and Skins 323

Enable Themes and Skins 325

Specify Themes for Your Page 326

Using Named Skins 330

Summary 332
Brain Builder 335

xii | Table of Contents

10. Putting It All Together . 339
Getting Started 339
Adding Styles 340
Using Master Pages 343
Setting Up Roles and Users 346
Logging In 348
Navigation 351
Products Page 354
Adding AJAX 363
Cart Page 365
Purchase Page 368
Confirm Page 375
Custom Error Pages 377
Summary 379
Source Code Listings 379

Cart Page 379

Confirm Page 382

Home Page 384

Login Page 385

Master Page 385

Products Page 388

Purchase Page 392

Web.config 397

A. Installing the Applications . 401

B. Copying a Web Site . 413

C. Answers to Quizzes and Exercises . 425

Index . 485

xiii

Cheat Sheets

VB Cheat Sheets
Classes 21
Methods, Event Handlers, Parameters, Arguments 28
Variables and Strings 50
Booleans 52
If-Then Statements 121
CType Method 123
Public and Private Properties 193
The Me Object 196
For Each 211
Catching Errors 212
Helper Methods 232
Arrays and Dictionaries 235
+= Operator 237
Select Case Statement 242
For Loops 253
StringCollection Class 310
Properties 328

SQL Cheat Sheets
Parameters 116
Joins 362

xv

Preface1

ASP.NET 2.0 with AJAX is arguably the fastest, most efficient, most reliable and best
supported way to create interactive web applications available today. Combined with
the development tools available from Microsoft, both free and commercial, it is
incredibly easy to create web sites that look great and perform well. Best of all, most
of the “plumbing” (security, data access, layout, and so on) is taken care of for you
by the .NET Framework.

About This Book
This book will teach you how to build professional quality, interactive, robust data-
driven web applications using Visual Basic 2005. In addition, your applications will
be highly interactive and data driven—must-have features in today’s feature-rich web
world.

ASP.NET is not difficult. All of the concepts are straightforward, and the Visual Stu-
dio and Visual Web Developer environments simplify the process of building power-
ful web applications. The difficulty in ASP.NET is only that it is so complete and
flexible that there are many pieces that must be woven together to build a robust,
scalable, and efficient application. This book cuts to the heart of the matter, show-
ing in clear, easy-to-follow steps, how to understand and build a web site.

Because there are three authors’ names on this book, you might be concerned that
the tone will be uneven. Every possible measure has been taken to avoid this.
Although each chapter was originally written by one author, they were edited by all
three. Every chapter was then extensively edited and rewritten by me, Jesse Liberty,
to give the book a single voice. If that weren’t enough, the chapters were subse-
quently edited by O’Reilly editors as well as independent tech editors, and once
more by the authors. The bottom line is that while three individuals wrote this book,
you should find it reads as if written by just one. This system has worked well with
my previous books. If not, please be sure to let me know by dropping a note in my
support forum (http://forums.delphiforums.com/JesseLiberty).

http://forums.delphiforums.com/JesseLiberty

xvi | Preface

About This Series
O’Reilly Learning books are written and designed for anyone who wants to build
new skills and who prefers a structured approach to studying. Each title in this series
makes use of learning principles that we (with your help) have found to be best at
equipping you with the knowledge you need for joining that new project, for coping
with that unexpected assignment from your manager, or for learning a new language
in a hurry.

To get the most out of any book in the Learning series, we recommend you work
your way through each chapter in sequence. You’ll find that you can get a quick
grasp of a chapter’s content by reading the instructional captions we’ve written for
its examples and figures. You can also use the chapter Summary to preview its key
takeaways and to review what you have learned. Most chapters feature a sample
application, and, if you learn best by reading code, you can turn to the complete
source listing that appears just before the Summary. To bridge any gaps in your
knowledge, check out the Cheat Sheets. Finally, to help you test your mastery of the
material in each chapter, we conclude with a Brain Builder section, which includes a
short quiz and some hands-on exercises.

Learning books work with you as you learn—much as you would expect from a
trusted colleague or instructor—and we strive to make your learning experience
enjoyable. Tell us how we’ve done by sending us praise, brickbats, or suggestions for
improvements to learning@oreilly.com.

Learning or Programming?
We have written two ASP.NET books: the one you are currently reading and another
named Programming ASP.NET 2.0. This book, Learning ASP.NET 2.0 with AJAX is
intended for beginning ASP.NET developers, and answers the question: “What is the
quickest way for me to build real web applications with the least handcoding?”

Our other book, Programming ASP.NET is for developers who are saying: “Help me
learn—in depth; show how everything works, and then help me put it to work in
web applications.” The key difference is this book is aimed to make you productive
quickly, while the second book is designed to explore the technology in detail. They
complement each other, but if you are starting out and want to get to work fast, this
is the one for you.

Learning ASP.NET 2.0 with Ajax assumes you know some HTML and have either
some familiarity with Visual Basic 2005 (VB) or C#, or can pick up what you need
along the way. (Or you’re willing to run right out and buy Programming Visual Basic
2005 by Jesse Liberty, although for what you’ll be doing here, you won’t really need
it). To help with this, we have included VB Cheat Sheets throughout the book to
explain and clarify some of the VB topics for newbies.

Preface | xvii

VB Versus C#
A quick note on Visual Basic versus C#: Some people choose a .NET book based on
what language the examples are given in. That’s a natural reaction, but it’s really not
necessary, and here’s why: There is very little actual VB or C# code in any given
ASP.NET program, and what there is, you can easily translate from one to the other
“on inspection.” Besides, the two languages are strikingly similar. If you know one,
it’s quite simple to learn the other. In fact, there are software tools that can convert
one language to the other with amazing accuracy. Finally, ASP.NET programmers
benefit terrifically by being “bilingual”—that is, having the ability to read VB and
write C# (or vice versa).

How This Book Is Organized
Chapter 1, Getting Started, walks you through creating your first web site,
HelloWorld.

Chapter 2, Building Web Applications, goes over the fundamentals of web sites and
covers the basic controls available to you in ASP.NET.

Chapter 3, Snappier Web Sites with AJAX, shows you how to integrate this powerful
client-side technology into your pages.

Chapter 4, Saving and Retrieving Data, shows you how to make your site interact
with data stored in a database. You have controls to retrieve data, allow your users to
interact with that data, and then save it back to the database.

Chapter 5 looks at Validation. ASP.NET provides extensive support for data valida-
tion, including ensuring that a choice has been made, checking that values are within
a range, and matching regular expressions.

Chapter 6, Style Sheets, Master Pages, and Navigation, shows you how to make web
sites that are professional quality, good looking, consistent, and easy to navigate.

Chapter 7 examines State and Life Cycle in ASP.NET. Understanding how, and in
what order, a page and its controls are created on the server and rendered to the
browser is crucial for building successful interactive web sites. State is the current
value of everything associated with the page. This is mostly handled automatically,
but this chapter shows you how useful it can be to the developer.

Poop happens. Chapter 8, Errors, Exceptions, and Bugs, Oh My!, shows you how to
deal with unexpected problems, and also how to debug your application.

Chapter 9, Security and Personalization, shows how you can protect your web site
from malicious users. A related topic is personalization, which allows your end users
to customize the look and feel of the web site according to their personal prefer-
ences. You will see how to use themes and skins to accomplish this.

xviii | Preface

Chapter 10, Putting It All Together, is a single, large example that integrates every-
thing you have learned throughout the book.

Appendix A, Installing the Applications, tells you what hardware and software is
required to run the examples in this book, and helps you set up your environment.

Appendix B, Copying a Web Site, describes the process of copying a web site to a new
web site. This is a technique used often throughout this book when building up
examples.

Appendix C, Answers to Quizzes and Exercises, presents detailed solutions to all the
quiz questions and practice exercises found at the end of each chapter.

Conventions Used in This Book
The following font conventions are used in this book:

Italic
Used for pathnames, filenames, program names, Internet addresses, such as
domain names and URLs, and new terms where they are defined.

Constant Width
Used for command lines and options that should be typed verbatim, and names
and keywords in program examples. Also used for parameters, attributes,
expressions, statements, and values.

Constant Width Italic
Used for replaceable items, such as variables or optional elements, within syntax
lines or code.

Constant Width Bold
Used for emphasis within program code examples.

Pay special attention to notes set apart from the text with the following icons:

This is a tip. It contains useful supplementary information about the
topic at hand.

This is a warning. It helps you solve and avoid annoying problems.

Support: A Note from Jesse Liberty
I provide ongoing support for my books through my web site. You can obtain the
source code for all of the examples in Learning ASP.NET at:

http://www.LibertyAssociates.com

http://www.LibertyAssociates.com

Preface | xix

There, you’ll also find access to a book support discussion group that has a section
set aside for questions about Learning ASP.NET. Before you post a question, how-
ever, please check my web site to see if there is a Frequently Asked Questions (FAQ)
list or an errata file. If you check these files and still have a question, then please go
ahead and post it to the discussion center. The most effective way to get help is to
ask a precise question or to create a small program that illustrates your area of con-
cern or confusion, and be sure to mention which edition of the book you have (this is
the first edition).

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example
code from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Learning ASP.NET 2.0 with AJAX,
by Jesse Liberty, Dan Hurwitz, and Brian MacDonald. Copyright 2007 Jesse Liberty
and Dan Hurwitz, 978-0-596-51397-9.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

We’d Like to Hear from You
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any addi-
tional information. You can access this page at:

http://www.oreilly.com/catalog/9780596513979

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

http://www.LibertyAssociates.com
mailto:permissions@oreilly.com
http://www.oreilly.com/catalog/9780596513979
mailto:bookquestions@oreilly.com

xx | Preface

For more information about our books, conferences, Resource Centers, and the
O’Reilly Network, see the web site:

http://www.oreilly.com

Visit the O’Reilly .NET DevCenter:

http://www.oreillynet.com/dotnet

Safari® Books Online
When you see a Safari® Books Online icon on the cover of your
favorite technology book, that means the book is available online
through the O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual library that lets you
easily search thousands of top tech books, cut and paste code samples, download
chapters, and find quick answers when you need the most accurate, current informa-
tion. Try it free at http://safari.oreilly.com.

Acknowledgments

From Jesse Liberty
I am particularly grateful to John Osborn who has shepherded all my work through
O’Reilly as well as the editors and production folk at O’Reilly who (as always) made
this book so much more than what we originally created.

From Dan Hurwitz
In addition to the people mentioned by Jesse, as always I especially want to thank my
wife for being so supportive of this project. It sounds trite and repetitious, but it
would not be possible without her help.

From Brian MacDonald
My thanks, first and foremost, go to Jesse and Dan for inviting me to be a part of this
project. My deepest appreciation goes to John Osborn for getting me involved with
O’Reilly in the first place, many years ago now. Thanks as well to Dan Maharry for
his technical feedback, especially on the exercises. Finally, thanks to my wife, Carole,
who provided technical as well as emotional support, and to my son, Alex. You both
put up with a lot of my absences while I worked on this book, and I thank you for it.

mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://www.oreillynet.com/dotnet
http://safari.oreilly.com

1

Chapter 1 CHAPTER 1

Getting Started1

Learning ASP.NET 2.0 with Ajax will teach you everything you need to know to
build professional quality web applications using Microsoft’s latest technology,
including ASP.NET 2.0 and AJAX. ASP.NET is Microsoft’s tool for creating
dynamic, interactive web pages and applications. Using plain vanilla HTML, you can
make a web page that has some great content, but it’s static. The content doesn’t
change, no matter what the user does. You can even use Cascading Style Sheets
(CSS) to make it the most visually impressive thing on the Web, but if what you
really need is for users to be able to leave comments, or browse your inventory, or
buy things from you, then HTML alone won’t get it done.

That’s where ASP.NET 2.0 comes in. Within these chapters, you’ll find out how to
do all the great tricks that you see on the most popular commercial web sites. Order
forms? We’ve got that. Interact with a database? You’ll do that too. Dynamic naviga-
tion tools? It’s in here. Personalized appearance that the user can customize? No
problem.

The best part is, you’ll do it all with minimal coding. You can make ASP.NET pages
in your favorite text editor if you want, but that’s a bit like using a hammer and
chisel to write the Great American Novel. If you use Visual Studio 2005, or its free
counterpart, Visual Web Developer, adding features to your page is as simple as
dragging and dropping. The tools generate most of the code for you. If you’re an old-
school type who cringes at the idea of letting someone else write your code, it’s all
still there, and you can tweak it to your heart’s content. Consider this, though:
would you rather spend your time writing the code for another radio button list, or
figuring out what to do with the data that you gather using it? In short, the tools do
the tedious chores for you, so you can get to the good stuff.

On top of all this, you can enhance your ASP.NET 2.0 site with AJAX, which is more
than just résumé enhancement; it’s a genuine improvement in the user experience.
When a user is browsing your product catalog, and she clicks on one of your thumb-
nail images to view the product’s details in another panel, she simply expects it to
work instantly. She doesn’t want to wait while the page contacts your server, reloads,

2 | Chapter 1: Getting Started

and then redraws itself with the new information. With AJAX, she won’t see any of
that. The update is seamless, and the user never has to slow down. You’ll see AJAX
tools used throughout this book. In fact, Chapter 3 is dedicated solely to just that
topic, so you can use AJAX with everything else we’ll show you.

One of the wonderful characteristics of the tools (Visual Web Developer or Visual
Studio) and the technology you’ll be using (ASP.NET and ASP.NET AJAX) is that
you’ll be able to create your applications with drag and drop programming and just a
little bit of hand coding to handle “events” (such as what happens when the user
clicks a button). Not toy applications—meaningful business applications.

By the time you’ve finished this book, you’ll be able to do all of that and more, and
you’ll learn about it by doing it yourself—hands-on. If you don’t have Visual Studio
or Visual Web Developer installed yet, turn to Appendix A now for detailed instruc-
tions on how to install and set it up. Once you’ve done that, it’s time to dive right in
and create your first application, “Hello World.”

Hello World
One of the most difficult problems in beginning any programming technology is the
“bootstrap” problem. That is, writing your first program requires using techniques
that you haven’t learned yet, but learning those techniques in a vacuum is not only
boring, but to some degree pointless because there’s no context, and thus no way to
integrate that which you learned.

The traditional solution to this dilemma is to create the canonical “Hello World”
program. Our Hello World web site will allow us to demonstrate many useful
aspects of ASP.NET without overwhelming you with detail. We promise we will
explain every aspect of this web site in detail, as we go along.

According to Wikipedia (http://en.wikipedia.org/wiki/Hello_World), the
tradition of a Hello World program dates back to a 1974 Bell Labora-
tories memorandum by Brian Kernighan.

This introductory web site will have only a Button and a Label control. Initially the
Label will display the text “Label.” When the user clicks the Button, the Label text
becomes “Hello World.” Very cool, eh? You can see the finished product in
Figure 1-1, after the user clicked the button.

Creating a New Web Site
To get started, open the Integrated Development Environment (IDE), which for
these purposes is either Visual Web Developer or Visual Studio. (Throughout this
book, we will use the acronym IDE for both, specifically using VS or VWD only
where they are different.)

http://en.wikipedia.org/wiki/Hello_World

Creating a New Web Site | 3

To create a new web site, click on the menu item File ➝ New Web Site…, or alterna-
tively, use the Create: Web Site… link on the Start Page. Either way, you should see
the New Web Site dialog, like the one shown in Figure 1-2.

In this book, we will be using Visual Basic as our default language,
although it is the profound belief of the authors that Visual Basic and
C# are really a single language, just with slightly different syntax.

We will be showing many of our screen shots from Visual Web Devel-
oper, because it is freely available from Microsoft, however, anything
that can be done in Visual Web developer can also be done in Visual
Studio.

Take another look at Figure 1-2, and we’ll examine it in some detail. In the upper
part of the window, you are offered various Visual Studio templates (though yours
may vary). Select the ASP.NET Web Site template, because that is the kind of site
that you are going to create (shown circled in this figure).

In the Location drop-down box at the bottom of the dialog box, select File System
(the other options are HTTP or FTP; we’ll explain this selection later in the next
section).

The Location drop-down in Figure 1-2 covers up another drop-down in which we
have set the language to Visual Basic (rather than to Visual C# or Visual J#). Finally,
you need to specify where on your disk you would like this web site to be placed—in
this case, in the LearnASP directory on the C drive.

Figure 1-1. This is what the HelloWorld web site will look like after the user clicks the Button.

4 | Chapter 1: Getting Started

The name of the new web site will be HelloWorld (with no space character). The site
will be fully contained in a subdirectory named HelloWorld within the directory
LearningASP.

Click OK; the IDE will create the directory for you, put the needed default files for
your site within it, and then open the IDE.

You can confirm that the files are in the right place by navigating to the specified
directory using Windows Explorer, as shown in Figure 1-3. When you work on your
site, however, you’ll most likely access these files through the Solution Explorer win-
dow located on the right-hand side of the IDE window.

The Location field in Figure 1-2 is really comprised of two parts: a drop-down with
three possible values, and a text box for the folder name and path. The drop-down
choices are File System, HTTP, and FTP.

File System is the default choice for new web sites and the only choice we’ll be using
in this book. It creates a new web site folder somewhere on the physical file system,
either on your local machine or your network. One important feature of ASP.NET is

Figure 1-2. To create a new web site, open the IDE, and click on Menu ➝ New Web Site to open
the New Web Site dialog box. The Templates and My Templates panels show you the types of sites
supported by your version of Visual Studio.

Selected template

Location drop-down Web site folder and name

Creating a New Web Site | 5

that an entire web site can be contained within a directory. This is extremely conve-
nient not only for deploying your web site to a web server, but as a side benefit, it
allows us to easily place samples from this book onto our web site for you to down-
load and try on your local machine.

When you create your web site, you can use the Browse button (lower-right corner in
Figure 1-2), and its associated drop-down, to browse the file system as you would
with Windows Explorer, and select any desired folder as the “home” for your new
web site folder.

When you run your file system-based web application from within the IDE, the
development environment runs the application using its own internal web server,
rather than a web server program such as Microsoft Internet Information Server (IIS).
This means that you can easily develop web sites on your machine without the neces-
sity of installing IIS.

The alternatives to hosting your site in your file system are named HTTP and FTP.
HTTP indicates that IIS will be serving the pages, and requires that the web applica-
tion be located in an IIS virtual directory. If you choose HTTP, the IDE will automat-
ically create this virtual directory for you and the web site will be served by IIS.

FTP allows you to develop your web site on a remote location accessible via the FTP
protocol. You will be presented with an FTP Log On dialog box with a checkbox to
allow Anonymous Log in, and textboxes for login user name and password, if
necessary.

Figure 1-3. Visual Studio creates a new web site directory for you, complete with the default files it
requires.

6 | Chapter 1: Getting Started

Creating HelloWorld
After you’ve named your new web application and chosen a place to host it, the IDE
will look more or less like Figure 1-4. This is where you do the real work of putting
your site together.

Which exact windows you see and how they are presented may be
influenced by options you’ve chosen. In your IDE, you can always
open new windows from either the View or Window menu and you
can undock, move, and redock the various windows using the mouse
and the on-screen docking indicators.

In Figure 1-4, you see the main window, which shows the page markup: HTML plus
ASP.NET declarations and controls. Also note the two tabs at the bottom of this
pane, labeled Design and Source. You’ll be using these two tabs a lot as you create
your pages.

Figure 1-4. Initial IDE screen for HelloWorld. This is what you’ll see after you’ve named your web
site, chosen a language, and created a directory for it.

Solution Explorer

Design tab Source tab Properties window

Creating HelloWorld | 7

To start, click on the Design tab. When you click this tab, the middle window of
your IDE becomes the design surface. On the design surface, you can drag and drop
items such as buttons, text fields, labels, and so on from the Toolbox, which you’ll
see in a moment, where they automatically become part of your application. Each
item that you can drag onto the design surface is called a control. You’ll be reading
more about controls in Chapter 2 and throughout this book.

Next, click on the Source tab. This view allows you to see the same controls, but dis-
played as HTML and ASP.NET markup. When you drag a control onto the design
surface, the IDE automatically adds the appropriate markup to make that control
part of the page. You can view and adjust that markup from the Source tab and even
drag controls from the Toolbox directly onto the Source view. As you switch back
and forth between Source and Design view, they will remain consistent with one
another as they are two views of the same information.

Many working programmers and even Microsoft itself will refer to
markup as source code. Other programmers draw a distinction
between markup (HTML, ASP.NET controls, XML, etc.) on the one
hand, and source code (C#, VB.NET, JavaScript) on the other. This
can, and does cause confusion, and all ASP.NET programmers learn to
differentiate as best we can by context. The Source tab shows markup
or HTML source code. The “code-behind” page, discussed below,
shows C# or VB.NET source code. Not a perfect naming system, but
there you have it. In practice, markup and ASP.NET source code have
become synonymous.

Again, referring to Figure 1-4, the window at the right edge of the screen displays the
Solution Explorer, which is used for navigating and working with the files that make
up your web site. The Database Explorer tab (at the bottom of the Solution Explorer
window) allows you to create and work with data connections.

Below the Solution Explorer window is the Properties window, which displays the
properties for the currently selected object on the page. Properties are settings that
are specific to each control, so the content of this window changes, depending on
what control you’ve clicked on. You’ll be reading a lot more about properties in the
discussion on controls in Chapter 2.

On the left edge of the Main window, click on the Toolbox tab to display the Tool-
box. Inside the Toolbox, you’ll find a number of expandable categories that contain
just about every control you’d want to use on your web page. If the Toolbox tab is
not visible, click on View ➝ Toolbox to display it. Initially it will be displayed in
expanded view, as shown on the left side of Figure 1-5. Click on the + or – icon to
collapse or expand each section.

8 | Chapter 1: Getting Started

You can “pin” any of the auxiliary windows in place, keeping them visible, by click-
ing the pushpin icon in the title bar of the window. When “unpinned,” they will
auto-hide, showing only their tab. Clicking on a tab while unpinned will make them
temporarily visible.

Making the HelloWorld Web Site Interactive
You’ve created your web page, but it doesn’t do much of anything right now. To
make your page come alive, you need to add some controls to it. Everything that
you’ll find in the Toolbox is a control, and you can add controls to your pages sim-
ply by dragging them onto either the design surface or into the Source view.

Figure 1-5. The Toolbox provides quick access to just about everything you’d want to put on your
page. Here, the Toolbox is shown expanded on the left, and collapsed on the right.

Making the HelloWorld Web Site Interactive | 9

For this first program, you’ll add a button and a label to your page, making it look
like what you saw back in Figure 1-1. Follow these steps:

1. Click the Design tab at the bottom of the main window to ensure that you are in
Design view.

2. If the Toolbox window is not already pinned in place, click on the pushpin icon
in its title bar to pin it in place.

3. If the Standard category of the Toolbox is not expanded, click on the plus sym-
bol and expand it. You should be able to see a number of basic controls listed in
the Toolbox, such as “Label,” “TextBox,” and “Button.”

4. Click on a Button control in the Toolbox, and drag it onto the design surface.

5. Click on a Label control in the Toolbox, and drag that onto the design surface
next to the button.

At this point, your IDE should appear similar to Figure 1-6.

This is a good time to stop and run your program, to see what it does so far. There
are three ways to do so:

• Click on the menu item Debug ➝ Start Debugging

• Press the F5 keyboard shortcut

• Click on the Start Debugging icon () on the toolbar

Figure 1-6. After you’ve added the button and label to your HelloWorld application, the design
view should look like this.

10 | Chapter 1: Getting Started

Because this is the first time you’ve run the program, the IDE will detect that your
web.config file is not set to allow debugging and will offer to make that adjustment
for you, as shown in Figure 1-7.

It’s not important to know what a web.config file is right now, but we’ll explain it
later. For now, click OK to allow the IDE to modify the configuration file.

After clicking OK, your application begins, your default browser opens, and your
button is displayed, as shown in Figure 1-8.

Figure 1-7. You’ll see this Debugging Not Enabled dialog box the first time you run your
application. Just select the first option and click OK to keep going.

Figure 1-8. This is what HelloWorld looks like in the browser before you do any coding. The button
doesn’t do anything yet, though.

Making the HelloWorld Web Site Interactive | 11

Click the button. Unfortunately, nothing happens. In the status bar of the browser,
you may see evidence that the page is sent back to the server—this is called a post
back, which we’ll describe in Chapter 2. For now, close the browser to end the appli-
cation; then return to the Design view in the IDE.

All web applications are “event-driven,” meaning that for anything to happen—for
any of your controls to take any action in the page—an event must fire. Then, behind
the scenes, a block of code called an event handler is called to handle that event. All of
this firing of events and calling event handlers is automatically wired in by ASP.NET,
and is far easier to set up than it is to describe, so don’t panic!

Not surprisingly, all buttons have a built-in event called Click. The Click event is
automatically fired whenever the user clicks a button. At the moment, when you
click the button on your web page, the event is fired, but there’s no event handler
yet, so nothing happens.

Creating the event handler for the Click event is easy. In Design view, double-click
the button control. This instructs the IDE to create an event handler and name it.
The IDE will name your event handler as follows: the ID of the control, followed by
an underscore, followed by the name of the event. If you do not explicitly name the
ID for this button (we’ll discuss naming events and event handlers later), the IDE
will apply the default ID of Button1. Thus, the name of the event handler will be set
to Button1_Click.

The IDE then displays the code-behind page and an event handler stub for you to
complete. Here you can add your own custom code to specify the operations you
want the handler to perform when it’s called.

Give it a try. Switch to Design view and double-click on the button. The code-behind
file containing your newly created event handler will open, as shown in Figure 1-9.

Because the IDE gave your button a default name of Button1, the click event handler
is named Button1_Click by default. Later you’ll see how to name your own buttons,
and if you wish, name your own event handlers.

In this event handler, whenever the user clicks the button, you want to set the Text
property of the Label control, which the IDE named Label1, to the phrase “Hello
World.” To do that, you need to assign that string of letters to the Text property of
the Label. The event handler for Button1_Click appears as shown in Example 1-1.

Example 1-1. The Button1_Click event handler in HelloWorld, before you change it

Protected Sub Button1_Click(_
 ByVal sender As Object, _
 ByVal e As System.EventArgs) _
 Handles Button1.Click
End Sub

12 | Chapter 1: Getting Started

Please note that in this listing, and in other listings throughout this
book, we’ve reformatted the code to fit the width of the printed page.
In Visual Basic, the line continuation character is the underscore (as
seen at the end of the first three lines, used here and elsewhere to
make legal VB code). Your IDE, or you, may place many of these com-
mands on a single line without the continuation character(s).

To assign the text string to the label, click inside the event handler, and then type the
following code:

Label1.Text = "Hello World"

When you’re done, the event handler should look like Example 1-2.

Figure 1-9. When you double-click the button in HelloWorld, you’ll be taken to the code-behind
page, where you can modify the event handler yourself.

Example 1-2. The Button1_Click event handler, after your addition

Protected Sub Button1_Click(_
 ByVal sender As Object, _
 ByVal e As System.EventArgs) _
 Handles Button1.Click
 Label1.Text = "Hello World"
End Sub

Summary | 13

After you’ve added the code to your event handler, run the program again. When the
page opens in your browser, click the button. Your event handler is working now, so
you should see the text label change to “Hello World,” as displayed back in
Figure 1-1.

What has happened is that when you click the button, the page is sent back to the
server, where your event handler is evaluated, and the string “Hello World” is
assigned to the Text property of the Label control. A new page was created by the
server and sent back down the “wire” to the browser as pure HTML, and then dis-
played on your screen. Close your browser to stop the application and return to the
IDE.

What You Just Did
When you follow step-by-step instructions as if following a recipe, it’s easy to lose
sight of what you’ve done. Here’s a quick review:

• You created a new web site on your file system.

• You dragged a Button and a Label into the design surface.

• You double clicked on the Button to create an event handler.

• In the event handler, you assigned “Hello World” to The Text property for the
Label control.

• You ran your application and clicked on the Button, causing the page to be sent
back to the server where the event handler code was evaluated. The text “Hello
World” was assigned to the Label and the page was sent back to the browser.

Congratulations! You’ve just built your first bona fide web page—and it’s interac-
tive, too. Pretty easy, isn’t it? You’ve seen how to use the IDE, you’ve worked in
Design view and in the code-behind file, and most important, you saw how to create
a page that actually responds to user input.

Summary
• ASP.NET 2.0 lets you create interactive web pages and applications. With

dynamic pages, you can interact with your users and create a richer experience
for them.

• Visual Studio 2005, or the free Visual Web Developer, supplies the tools that
make creating a web page as easy as dragging and dropping, minimizing the
code you need to manually write.

• AJAX is a set of tools that you can use to make the user’s experience more seam-
less, by reducing the number of page flickers caused by the entire page posting
back.

14 | Chapter 1: Getting Started

• You can create a new web site, or open an existing one from the Start Page in
Visual Web Developer or Visual Studio.

• In ASP.NET, you can store your entire web site within a single directory, which
in this book will always be on your local hard drive, but you can also store them
at a remote location and serve them using IIS.

• The main window of the IDE has two views: Design and Source. Design view
allows you to see the visual design of your web page; Source view shows the
HTML and ASP.NET markup instead. You can switch between the two views on
the fly.

• The items that you add to your web page are called controls. Controls are stored
in the Toolbox, which by default appears on the left side of the IDE. You add
controls to the page simply by dragging them from the Toolbox onto the appro-
priate spot on the page, in either Design view or Source view.

• The Solution Explorer, located on the right side of the IDE, displays the files in
your web site. Below the Solution Explorer is the Properties window, which lets
you adjust the properties of any control you select. On a separate tab is the Data-
base Explorer for access to the databases and servers that support your web site.

• You can run your application by clicking Debug ➝ Start Debugging from the
menu, pressing F5, or clicking the Start Debugging button.

• Web applications are event-driven, meaning that the controls raise events, which
are handled by code blocks called event handlers.

• When you double-click on a control, you’re automatically taken to the code-
behind file, where the IDE will create a handler for the control’s default event.

• The code for the server controls resides in another file called the code-behind
file.

• The user interface of your page is made up of controls, such as buttons, text
fields, and radio buttons, although many controls are more complex. HTML
controls are available to any HTML page. ASP.NET server controls include more
powerful controls provided by Microsoft, in addition to server versions of the
HTML controls. .NET AJAX server controls resemble ASP.NET server controls,
but are implemented with JavaScript, and run on the browser, not the server.
User controls and custom controls are created by developers.

You’ve come a long way in just one chapter. Sure, “Hello World” is a trivial page, as
web pages go, but it’s interactive, which is the point of the book. You can close out
the chapter with some quiz questions to see how much you’ve learned, and then a
simple exercise to let you practice your skills. Even though you’ve come this far,
you’ve just scratched the surface of what’s available to you in ASP.NET. Just glanc-
ing at the Toolbox shows you that there are many more controls than you’ve used in
this chapter. In Chapter 2, we’ll show you how to use some of them, and you’ll build
an order form to see how they all work together.

Exercises | 15

B R A I N B U I L D E R

Quiz
1. How do you create a new web site in the IDE?

2. What are the two views of your page that you can use in the IDE?

3. What’s the name for the settings that are specific to each control?

4. Where in the IDE will you find the controls that you can place on your page?

5. How do you run your application?

6. What event is raised when you click on the Button control?

7. Where is the code for the event handler located?

8. What’s one way to access the default event handler’s code?

9. What property of the Label control do you use to set its content?

10. Every ASP.NET web site has at least one web page. What is the extension for the
file that contains this page?

Exercises
Exercise 1-1. This is your first exercise, so we’ll take it easy on you—you’ll make
some changes to HelloWorld. Open the example again. Recall there are a few ways to
do this:

• Select File ➝ Open Web Site.

• Click the Start Page tab at the top of the main window to display the Start Page,
and click the Open Web Site link, or select it from the Recent Projects list, if it’s
there (and it should be, if you’ve just finished this chapter).

With the file open, select the code-behind file, either from the tab at the top of the
window, or in Solution Explorer. Go to the Click event handler, and change the
“Hello World” text to a message of support for your favorite sports team (or band, or
movie, or whatever you like).

Now switch back to the .aspx file. Select the label control, and check out the Proper-
ties window. There’s more here than just setting the text, as you’ve seen. Go to the
Appearance section of the Properties, and play around with them to your liking.
Click the + sign next to the Font property, and you’ll find lots of options with which
you’re probably familiar. Try changing the font, the text size, and the color. You can
also play with the border of the label too. Note that if you change the Text property
here, you’re changing the initial text of the label. After you’ve kicked the tires a bit,
run your application to see how it looks. You can see an example in Figure 1-10,
although this is the affiliation of only one of the authors.

16 | Chapter 1: Getting Started

Figure 1-10. The results of Exercise 1-1, for at least one of the authors. Your page may look
different, depending on your sports loyalties.

17

Chapter 2 CHAPTER 2

Building Web Applications2

You’ve built your first web site, and you’ve gotten your feet wet, which is great. But
so far, you’ve only used two controls: Label and Button. You’ve seen the Toolbox in
the IDE, and it’s stuffed with controls just waiting for you to experiment with. That’s
exactly what you’re going to do in this chapter. You’ll build a functional order form
for a fictional business, even though you won’t do anything just yet with the data
your form will collect. You’ll get to try out many of the basic controls in both Design
view and Source view, you’ll learn about web site fundamentals and selection con-
trols and their collections of items, and you’ll see how to display the results retrieved
by one control in another control somewhere else on the page.

Mastering Web Site Fundamentals
The difference between a web page that simply displays information and a web appli-
cation that interacts with your user is the application’s ability to gather data from the
user, process it on the server, and take action accordingly. The core of a web applica-
tion is the page and its interactive controls. This part of the chapter will introduce
the web page and the types of controls that you’ll use throughout the remainder of
this book, and throughout your ASP.NET programming career. We will also intro-
duce the mindset that will move your applications from being a “brochure” that dis-
plays information, into an interactive application delivered over the Web.

The Page
Every ASP.NET web site consists of at least one web page stored in a single file with
the extension .aspx. There is usually more than one file, as you will see as we go
along. The .aspx file is called a content file. Some developers call it the markup file,
which makes sense when you remember that HTML stands for HyperText Markup
Language.

18 | Chapter 2: Building Web Applications

The contents of the page itself are comprised of “server controls” and “normal”
HTML. Server controls are simply controls with code that runs on the server. Nor-
mal HTML is sent to the browser “as is.” For technical details on how these pages
are processed by the web server, see the sidebar below, “How Pages Are Processed
on the Server.”

The .aspx files can also contain script blocks, usually written in JavaScript, to be exe-
cuted on the client. Remember, server-side code is executed on the server; client-side
script is executed on the client’s machine by the browser.

The normal structure for an ASP.NET with AJAX application is this: the markup
(content) file will contain controls. Some of the controls will be server controls. Their
code (which will execute on the server) is written in a second file called the code-
behind file. Other controls are AJAX controls, and their code is sometimes written in
script blocks in the markup file, or more commonly, it is buried in .dll files provided
to you by Microsoft (and thus not visible to you as script code), but which is inter-
preted by the browser on the client machine.

How Pages Are Processed on the Server
When a user enters the URL for a page into a browser, the browser requests that page
from the web server. If the page being requested is an .aspx page, the server processes
the page before returning it.

The .aspx page serves as a set of instructions to the server on how to create a standard
HTML page to return to the browser. If this is the first time that the .aspx page has been
requested since the web application started, then the ASP.NET runtime compiles,
from the page, a Page class that derives from the base System.Web.UI.Page class. The
compiled class contains all the control declarations and code that make up the page,
including properties, event handlers, and other methods. This compiled class is cached
in server memory for faster response on subsequent requests.

In order for an .aspx file to be processed by the ASP.NET runtime, it must have a page
directive as the first line in the file. Directives provide information to the compiler, such
as the language in use, the name of the code-behind file, if any, and the name of the
Page class. Visual Studio automatically generates the page directive for you when you
create a new web page. The page directive for your HelloWorld web page (which can
be seen in Figure 1-9) looks like the following:

<%@ Page Language="VB" AutoEventWireup="false"
 CodeFile="Default.aspx.vb" Inherits="_Default" %>

With all this information, the server is able to run all of the server-side code, translate
all of the server-side controls into standard HTML and JavaScript, and assemble an
HTML page that will be returned to the calling browser. If the page that is returned
includes client-side script, that script will be run on the client-side machine, by that
browser, when the page is rendered.

Mastering Web Site Fundamentals | 19

There are also HTML controls that are passed “as is” to the client machine’s
browser: such as tables, and
 (the line break tag), and so on.

ASP.NET also allows you to create so-called HTML-server controls,
which are HTML controls with the tag runat="server" but these are
not commonly used, and won’t appear in this book.

Once again, this book assumes you have a passing familiarity with HTML, but even
if you do not, you should find the examples self-explanatory.

If a markup file is named Welcome.aspx, its associated code-behind file will be
named Welcome.aspx.vb, indicating that the code-behind file is written in Visual
Basic (.vb) (or Welcome.aspx.cs if you are writing in C#).

Controls
As you saw in the HelloWorld example, controls are the building blocks of the web
page’s graphical user interface (GUI). Some controls that you are probably familiar
with include buttons, checkboxes, and list boxes.

Controls allow a user to indicate a preference, enter data, or make selections. They
can also provide support for validation, data manipulation and security, or help to
ensure a uniform look and feel to the application.

There are several types of web controls:

HTML controls
The original controls available to any HTML page, such as input (for entering
data), a (anchor), div (for separating and applying format to a section), and
more. These all work in ASP.NET exactly as they work in other web pages.
HTML controls will be used where appropriate in this book, but will not be dis-
cussed in detail. For a good resource on HTML controls, see HTML & XHTML:
The Definitive Guide, by Chuck Musciano and Bill Kennedy (O’Reilly).

ASP.NET server controls
Microsoft created the ASP.NET server controls to accomplish two complemen-
tary aims. First was to “normalize” the HTML controls so that the programmer
would have a more consistent interaction with the control, and second, to add
an extensive and rich set of powerful new controls such as calendars, ad rota-
tors, and more.

.NET AJAX server controls
These new controls look and feel like traditional ASP.NET server controls. How-
ever they implement JavaScript that is run by the browser on the client side to
greatly enhance the performance of the application. AJAX provides two key ben-
efits to the ASP.NET programmer: client-side functionality and asynchronous
updates of data, allowing the page to update a segment of data without page

20 | Chapter 2: Building Web Applications

flicker. That is quite a mouthful and we will cover this in much more detail later
in the book.

User controls and custom controls
Controls created by the developer or third parties (that is, not Microsoft). This
topic is beyond what we’ll cover in this book, but for a full discussion of creat-
ing these user-defined controls please see our more advanced text, Programming
ASP.NET, also published by O’Reilly.

The heart of ASP.NET programming is the ASP.NET server control. With the excep-
tion of tables, the use of the vast majority of traditional HTML controls is replaced
by their equivalent ASP.NET control both for convenience and flexibility. Thus
rather than using a traditional HTML input control, you will use instead an ASP.
NET TextBox control. Not only will this allow the TextBox to run server-side code,
but it is easier to use, being more intuitive and consistent.

There is an ASP.NET Table server control, but unless you really need
some of its features for a specific reason, the majority of developers
use HTML tables most of the time as they are simply easier to use.

ASP.NET AJAX server controls enjoy all the benefits of ASP.NET server controls,
such as drag-and-drop operation and a declarative programming model. However,
they also include added client-side functionality, helping you to create a smooth and
snappy user interface.

In addition to standard form elements, such as text boxes, labels, buttons, and
checkboxes, ASP.NET controls include several broad categories that provide rich
functionality with very little code. These include:

Validation controls
Often, a given field requires a specific format or range of data to be valid. Many
of these validation routines are similar and used in many places (making sure
there is an entry), that two entries match (such as when setting a password), that
an entry falls within a predetermined range of values, (which can help protect
against malicious code injection attacks). Microsoft provides a full range of built-
in validation controls. Chapter 5 discusses these controls in detail.

Data source controls
Data binding to a variety of data sources, including Microsoft SQL Server and
Access and other relational databases, XML files, and classes implemented in
code. Data source controls are covered in Chapter 4.

Data view controls
Various types of lists and tables that can bind to a data source for display and
editing. Data view controls are also covered in Chapter 4.

Mastering Web Site Fundamentals | 21

Login & Security controls
Handle the common chores of logging in to a site and maintaining user pass-
words. Login and Security controls are covered in detail in Chapter 9.

Personalization controls
Allow users to personalize their view of a site, including rearrangement of the
page itself. User information can be saved automatically and transparently, and
retained from one session to the next. Personalization is also covered in detail in
Chapter 9.

— V B C H E AT S H E E T —
Classes

Although we’ve said that you don’t need to know much VB to make ASP.NET pages,
you need to know a bit of the vocabulary to understand the background discussion in
this section. You may have heard that VB.NET is an object-oriented language, which
means that everything you make with the language is an object—every control, every
label, even the page itself is an object. Each object is a specific instance of what’s called
a class, or to put it another way, a class is a general case that defines each object. Using
the classic example, if Dog is a class, then your own dog Sparky is an object — he’s an
instance of the Dog class. You can’t see or touch Dog, but you can see and touch Sparky.
In ASP.NET, you can’t put the Label class on your page, but you can create a Label
object that’s an instance of the Label class, and put it on your page.

So what’s the point of the class, then? The class defines the qualities that the object has
(called properties), and the things that the object does (called methods).

Dog might have properties called color and size, for example. Each object might have
different values for each property, but by definition they all must have the property. So
Sparky might have a color of brown and a size of large, whereas Frisky has a color of
white and a size of small, but they’re both still members of Dog. In ASP.NET, a Label
control has properties for Text and Font.

Methods, on the other hand, tend to be actions which all objects in the class can per-
form. If Dog has a method for Bark() and Eat(), then both Sparky and Frisky can bark
and eat. The Label control, for example, has methods of ApplyStyle() and Focus() so
you can call those methods on any Label control to apply a style to the label, or set the
focus to that control.

You invoke both properties and methods with what’s called dot notation. It’s pretty
simple; you give the object’s name, followed by a period, followed by the method or
property name you want to use, like this:

sparky.color = white
lblMyLabel.Text = "The text for the label"
lblMyLabel.ApplyStyle(MyStyle)

22 | Chapter 2: Building Web Applications

Master pages
Create web sites with a consistent layout and user interface. Master Pages are
covered in Chapter 6.

Rich controls
A subset of ASP.NET controls that implement complex features such as menus,
tree views, and wizards.

AJAX controls
A new set of controls that provide client-side asynchronous and partial-page
postbacks, including the ScriptManager, UpdatePanel, UpdateProgress, and Timer.
AJAX is covered in detail in the next chapter.

AJAX Toolkit Controls
An expanding set of controls based on AJAX that provide enhanced client-side
functionality without the need to write JavaScript, such as watermarks, collaps-
ing panels, and pop ups.

Code-Behind Files
Although you can put your content and your code in a single file, it is strongly dis-
couraged and we will not do so in this book. The preferred method is to put your
content (HTML, server controls, and AJAX controls) into a markup file with the
extension .aspx, and to put your server-side code into a code-behind file with the
extension .aspx.vb. You saw this separation of content from code-behind in the
“Hello World” example in Chapter 1.

Events and Postbacks
In the HelloWorld program you created earlier, the page was sent back to the server
when you clicked the button. When the page returned to the browser, it was dis-
played with new text, specifically with the words “Hello World.”

As we described in the example, clicking on the button raised the Click event. It
turns out that many controls have a Click event, and each control may also have
other events specific to itself. For example, lists typically have an event for when the
selected item changes, while text boxes have events for when the text they contain is
changed.

The code that responded to the button’s Click event in HelloWorld (the control’s
event handler), was a method of the Page class, specifically the page that contained
the button. As is often the case, this is more confusing to explain than to see in
action. To the user, it simply appeared that clicking the button changed the contents
of the page.

Mastering Web Site Fundamentals | 23

What is important to keep in mind however, is that when you click the button, the
page is “posted back” to the server. A postback is an instruction to the page to return
to the server to have event handlers evaluated, then to have the same page sent back
to the browser after the code in the event handlers is run.

When you return to the server and a new page is sent to the browser
that is not a postback. When you return to the server, processing is
done, and the same page is returned to the client, that is a postback.

Not all controls automatically post back every time you click on them. Buttons do,
but just changing the selection in a list box, for example, normally does not. (You
can, if you want, set a list box to post back every time its selection is changed, as you
will see later in this chapter.)

Synchronous and Asynchronous Postbacks
In ASP.NET with AJAX, there are actually two types of postbacks:

Normal
In a normal postback, the entire page is sent back to the server for processing. As
just noted, some events do not cause an automatic postback. These events are
stored up until a postback occurs, and then they are all handled together. When
all of the event handlers have been run, a new HTML page is generated and sent
back to the browser.

A normal postback is synchronous—nothing else will happen in your applica-
tion until the server processing is complete and the response is sent back to the
browser. The typical time for such an update is less than one second, but this
can be dramatically affected by database interactions, network speed and other
factors, some of which are beyond your control. In any event, the user will see
the page flicker when the browser redraws it.

Partial page, Asynchronous
AJAX allows an asynchronous postback in which the developer designates an
area of the page to be updated, while the rest of the page remains unaffected.
The user usually perceives no page flicker and may be unaware that processing is
happening on the server at all. This can make for a dramatically more respon-
sive application.

Be careful with event handling in postbacks. A common bug is caused
by assuming that event handler A will run before event handler B. The
best way to discover such bugs is by putting break points into your
event handlers, which we will explore in Chapter 8, and stepping
through the postback, seeing which event handlers are called, and in
what order.

24 | Chapter 2: Building Web Applications

The next example will demonstrate both a normal postback and an AJAX asynchro-
nous (partial) post-back with two labels: one will update every time the full page
updates; the other will update asynchronously.

To start, create a new web site named Postbacks. If necessary, refer back to
Figure 1-2, and create the new web site just as you did in the HelloWorld example,
but this time select the ASP.NET AJAX-Enabled Web Site template instead of ASP.
NET Web Site. Be sure to name the web site folder Postbacks, to give that name to
the site. When the project is open, switch to Design view by clicking on the Design
tab at the bottom of the editing surface.

Because you chose the AJAX-Enabled Web Site template, you’ll notice that the IDE
inserted a ScriptManager control onto your page. We’ll discuss the ScriptManager in
detail in Chapter 3, but be assured that it will not be visible when your application is
running; its job is to work behind the scenes to coordinate the AJAX controls on the
page.

Press the Enter key once to move the cursor below the ScriptManager control, then
type in the text:

Page Loaded at:

Drag a Label control from the Toolbox onto the design surface next to the text you
just typed. Click on the Label control to select it, so that the Properties window
shows the properties for the Label. You’ll know if you’ve selected the right control
because its name will be listed at the top of the Properties window—in this case,
Label1. Before proceeding, change the ID of the Label to something more meaning-
ful. In the Properties window, scroll up or down until you find the (ID) property in
the left column. Click in the right column, delete Label1, and then type in
lblPageLoad. Now find the Width property in the left column, and change its value to
200px in the right column.

Drag a button onto the page, to the right of the label. Select the button, and in the
Properties window, change the button’s ID to btnPostback and the Text property to
Postback, in the same way that you changed the label’s properties.

Your page should now look pretty much like that shown in Figure 2-1.

In Solution Explorer, click on the plus sign next to Default.aspx to expand the list of
files. You will see the code-behind file created for you, named Default.aspx.vb.
Double-click on the code-behind file to display that file in the editing window, as
shown in Figure 2-2.

You can also open the code-behind window by right-clicking on the
markup window and choosing “View Code.”

Mastering Web Site Fundamentals | 25

Naming Conventions
Microsoft’s .NET naming guidelines prohibit the use of Hungarian notation for all
“public” identifiers. Hungarian notation is the practice of prepending variable names
with letters that indicate the type of the identifier (e.g., prepending a variable of type
integer with “i”). (You can read about the history of Hungarian notation at http://en.
wikipedia.org/wiki/Hungarian_Notation. Apropos of nothing, the namesake of Hun-
garian notation, Charles Simonyi, recently visited the International Space Station as a
tourist aboard a Russian space vehicle.)

Because the guidelines do allow the use of Hungarian notation in private member vari-
ables, two schools of thought have arisen about using this notation, especially when
referring to controls on a page. Many developers will refer to a text box, for example,
as txtLastName, while others will name the same text box LastName. The authors of this
book represent vociferous advocates of both camps. (In fact, one of the authors is him-
self a strong advocate on both sides of this issue depending on his mood.) You will,
therefore, stumble across both notation in this book. This is not a bug, it is a feature,
intentionally included to help you become used to both approaches. Honest.

Figure 2-1. Drag a Label and a Button onto the Postbacks page and set a few properties.

26 | Chapter 2: Building Web Applications

The Page Load event and synchronous postback

Every time an ASP.NET page is displayed, the Page’s Load event is fired. You’ll use
that event to display the time that the page was loaded. To do so, you need to create
an event handler for the Page Load event.

At the top of the code window are two context-sensitive drop-down controls, as indi-
cated in Figure 2-2.

The drop-down on the left displays the classes and controls in your application (as
well as the useful all-purpose setting [General]); the one on the right displays all the
methods and events for the class or control selected on the left.

Select (Page Events) in the left drop-down, and then select Load in the right drop-
down. This will bring up a code skeleton for the Page_Load event handler, as shown
in Figure 2-3.

Type the highlighted code from Example 2-1 into the Page_Load event handler.

Figure 2-2. The code-behind editing window for the Postbacks page, showing the Classes &
Controls and Methods & Events drop-downs. Set the Classes & Controls method to (Page Events),
and the Methods & Events drop-down to Load.

Classes & Controls Methods & Events

Mastering Web Site Fundamentals | 27

Run the application. If it is the first time the web site has been run, the IDE will offer
to modify the web.config file to enable debugging. Click OK to that. A browser
should open with text similar to that shown in Figure 2-4.

Buttons post back to the server even if you do not implement an event handler for
their Click event. Click the button a few times. As you can see, each time you click
the button, the page is posted back. Take a look at the status bar to see the change to
the page being sent back to the “server” (in quotes because in this case the server is
your local machine). For each postback, the page is reloaded, triggering a Page_Load
event. This in turn causes the Load event handler to run and the Label’s text to be
updated with the current time.

Figure 2-3. After you select Page Events and Load from the code-behind page drop-down, a code
skeleton for the Page_Load event handler is inserted automatically.

Example 2-1. Page_Load for Postbacks example

Protected Sub Page_Load(_
 ByVal sender As Object, _
 ByVal e As System.EventArgs) _
 Handles Me.Load
 lblPageLoad.Text = DateTime.Now
End Sub

Object parameter

Handles clause Event argument
parameter

28 | Chapter 2: Building Web Applications

Figure 2-4. When you run the Postback page for the first time, you see a normal postback like this.

— V B C H E AT S H E E T —
Methods, Event Handlers, Parameters, Arguments

In Visual Basic.NET, a method is implemented either as a sub (which returns no value)
or a function (which returns a value).

Methods may declare values that are “passed into” the method and used as if they were
declared as local variables. In VB.NET you must declare the type of the value to be
passed in. When the method is called you must pass in a value. The declaration and
the value passed in are called either parameter or argument. Some old-school computer
scientists distinguish between these terms, but we will use them interchangeably.

Event handlers are special methods that are designated to run when an event is raised
by a control, or by the operating system, or by something else happening in your pro-
gram that requires a response. By convention, event handlers in ASP.NET always take
two arguments. The first, marked as type object, is the object that caused the event,
and is named, by convention, sender. The second is marked as type EventArgs or a type
that derives from EventArgs. (Derivation is a concept from object oriented program-
ming. It can be summarized as “specialization.” When you derive a Cat from Animal,
you say that a Cat is an animal, but a special type of animal, with special characteristics
or special behaviors.) This second parameter, the EventArgs, is called e.

Event handlers in VB.NET are marked with the event that they handle. Thus, you
might mark the method Page_Load with the keywords Handles Load or Handles Me.Load
where Me is a keyword that refers to the object itself (in this case, the page) signaling
.NET that this method handles the Load event of the page.

Mastering Web Site Fundamentals | 29

If you are adventurous, you can put a breakpoint in the PageLoad event
handler. Open the code behind page, navigate to the Page_Load
method, and then click on the line where you want the debugger to
stop the program execution. Press the F9 key, and then F5 to run the
app in debugging mode. You will see this break point stop the applica-
tion each time the page is about to run. We will cover debugging in
detail in Chapter 8, but we couldn’t resist showing you that this really
works.

You can achieve the same result by clicking the refresh button on your browser,
which forces a refresh of the current page, and thus a post back to the server. When
you’re done, close your browser to stop the application.

Adding asynchronous postbacks

With traditional postback code in place, you’ll modify this application to add the
ability to make an asynchronous postback using AJAX.

Return to default.aspx by clicking on it in Solution Explorer, then switch to design
view. by clicking the Design tab. Bring up the Toolbox and pin it in place. Expand
the AJAX extensions section in the Toolbox. Place the cursor after the button con-
trol and press the Enter key to move the cursor down to the next line. Drag an
UpdatePanel from the Toolbox onto the design surface.

The AJAX UpdatePanel control is the key to asynchronous updates. Any controls that
you place within the UpdatePanel will be updated asynchronously, including both
standard ASP.NET and HTML controls. The panel acts as an asynchronous portal
back to the server.

To display the time the UpdatePanel was updated, add the following text inside the
UpdatePanel:

Partial-Page Update at:

Scroll back up within the Toolbox to the Standard controls and drag another Label
control into the UpdatePanel. Be sure this control is inside the UpdatePanel or this
example won’t work. Make sure the new label is selected, and update its properties.
Change its ID to lblPartialUpdate and set its Width property to 200px.

You can also add these controls in Source view, either typing the code
by hand, or by dragging a control from the Toolbox. You can then set
properties in the Properties window or type in attributes directly in the
code window.

Drag a Button control into the UpdatePanel. In the Properties Window, change the ID
of that Button to btnPartialUpdate, and set the Text property to “Partial Update.”
The Design view should look something like Figure 2-5.

30 | Chapter 2: Building Web Applications

Next, you need to add an event handler for btnPartialUpdate’s Click event. Double-
click on btnPartialUpdate. The default event for a button is its Click event, and
when you double-click on a control, the default event handler is created for you. The
code behind file will open within the default event handler. As you have already
seen, the event handler inherits its name from the control and the event, separated by
an underscore, in this case btnPartialUpdate_Click.

Enter the highlighted line of code from Example 2-2 in the click event handler for
btnPartialUpdate.

Once you’ve made the change, run the updated application. After the page loads,
click on the Partial Update button. You will see something similar to Figure 2-6.

Depending on which region your computer is in and how your region
options are set, you may see the date and time displayed using a differ-
ent format.

Figure 2-5. After you’ve added the UpdatePanel and the Partial Postback controls, your Design
view should look like this.

Example 2-2. Click Event Handler for btnPartialUpdate

Protected Sub btnPartialUpdate_Click(_
 ByVal sender As Object, _
 ByVal e As System.EventArgs)
 lblPartialUpdate.Text = DateTime.Now
End Sub

Controls | 31

Now try clicking each of the buttons and notice how the labels change. When you’re
done, close the browser.

Note the following results:

• Clicking on Partial Update button updates the label in the UpdatePanel control,
but not the label outside the UpdatePanel.

• Clicking on the Postback button updates the label outside the UpdatePanel but
not the one inside.

• The UpdatePanel is invisible to the user (though its effects are not).

• We work too late.

What’s great about updating just a portion of a page this way is that it not only elim-
inates “flicker” but your entire application will seem faster and more responsive to
the end user.

Controls
As you’ve seen in both the examples so far, when you drag a control from the tool-
box onto the design surface, it is generally represented as a visible widget to the user.
Some controls, however, are used less for display than for manipulating other objects
(for example, database manipulation controls) and these are displayed in a special
area at the bottom of the main window.

In any case, every control is identified by a unique ID property. Both Visual Web
Developer and Visual Studio will automatically assign an ID to your control as you
drag it onto your page. These automatically generated IDs are rarely meaningful, and
we suggest that you rename them. For example, while the IDE might name your
label “Label2,” you will probably find it much more useful to rename that label
lblPartialUpdate.

Figure 2-6. After you click the Partial Update button, the label in your UpdatePanel refreshes, but
the label outside the UpdatePanel does not.

32 | Chapter 2: Building Web Applications

When you click on a control in either Design or Source view, its properties are
shown in the Properties window. You can change any property value in the Proper-
ties window or directly in Source view, and any changes you make will be reflected in
both places immediately.

Organizing the Properties Window
Within the Properties window, you can group properties by category or alphabeti-
cally. Figure 2-7 shows the Accessibility, Appearance, and Behavior categories of a
button, though there are others. You can click the appropriate buttons in the menu
bar to toggle between the Categorized and Alphabetical views. (When organized
alphabetically, the ID of the Control is placed, out of order, at the top of the list, for
convenience.)

Virtually every control has events associated with it. To view a control’s events, click
the lightning bolt button. To switch back to properties click the Properties button.

Finding properties with IntelliSense

If you prefer to work in Source view rather than Design view, you can enlist Intel-
liSense to help you find both the properties and events for any given control. As you
press the spacebar, the list of members for the control will be displayed. As you type,

Figure 2-7. The Properties window, as you would expect, shows you the properties of the control
you select. You can organize the properties by category, as shown here or alphabetically. You can
also view the events associated with the control.

Alphabetical

Categorized

Properties Events Property pages

Controls | 33

IntelliSense will help you fill in the appropriate property or event, as shown in
Figure 2-8.

Basic Controls
We could simply review the basic controls in a vacuum, but that’s not very interest-
ing. Instead, in this section you’ll create a meaningful business application using the
ASP.NET and AJAX controls in context. The application will be for a fictitious com-
pany called AdventureWorks, a recreational equipment retailer. You may remember
the name AdventureWorks from Chapter 1; it’s the name of the fictional company
used in the sample databases you downloaded and installed there. You won’t need
the databases now, but you’ll see them again in Chapter 4. To begin, create a new
web site using the ASP.NET AJAX-Enabled Web Application template (similar to
what you did in the previous chapter). Name your new project AdventureWorks.

For this version of the program, you’ll use hardcoded data. In later chapters you will
add dynamic content with data retrieved from a database.

The first page you’re going to build is the order form. The finished page will look
something like Figure 2-9, where all the types of controls are labeled. This some-
what contrived web page (see the sidebar “Good Sites Look Good”) is intended to
demonstrate many of the available ASP.NET controls for various applications.

Figure 2-8. Intellisense provides a drop-down as you type, so that you can select the property or
event you want to use.

34 | Chapter 2: Building Web Applications

Figure 2-9. This is what the AdventureWorks Order Form in this example will look like when it’s
finished. It’s not the prettiest page, but it uses lots of the controls you’ll be using in this book.

TextBoxes

DropDownList

TextBox with
TextMode=Password

TextBox with
TextMode=MultiLine

RadioButtons

RadioButtonList

CheckBoxList

ListBox

Image

CheckBox

DropDownList

HTML table with table cells
as HTML server controls

Button

HyperLink

Controls | 35

In Solution Explorer, rename default.aspx to OrderForm.aspx by right-clicking on the
file name and selecting Rename. The code-behind file is automatically renamed, as
well as almost all the internal references.

When you use automatic renaming, be careful about names that are
used in text or in page directives (at the top of HTML files)—they will
not be renamed for you. Also, the name of the class in the code-behind
file will not be updated automatically.

In this example, you’ll work in both Design and Source view, moving back and forth
depending on which is most convenient for the task at hand.

Open OrderForm.aspx and select Source view. Change the text between the <title>
tags from Untitled Page to AdventureWorks, and then run the application. At this
point, an empty browser will come up with AdventureWorks in the title bar.

Good Sites Look Good
Our only excuse for how ugly the forms in this book are is that we are consciously
avoiding all styling to keep the examples as simple as possible.

We do believe, however, that the creation of professional quality web sites requires
going beyond just the programming, and includes creating professional looking web
sites as well.

Unfortunately, using style sheets, let alone image buttons, images, gradients, and all of
the other ingredients necessary for a truly professional looking web site would clutter
up the examples in the book, making it longer than necessary, and would only get in
the way of what you really want to learn about—ASP.NET.

We will return to style sheets in Chapter 6 and we do cover all of these subjects in some
detail in Programming ASP.NET. However, the art and skill of creating truly profes-
sional looking web sites requires many books, as this approaches an art form.

Among the resources we recommend are the highly acclaimed web site: http://www.
csszengarden.com/, and its associated book, The Zen of CSS Design: Visual Enlighten-
ment for the Web, by Dave Shea and Molly Holzschlag (Peachpit), as well as the books:

• The Non-Designer’s Design Book by Robin Williams (Peachpit)

• Don’t Make Me Think by Steve Krug (New Riders)

• The complete Classroom in a Book series by Adobe

• The Total Training computer based courses: Creative Suite 3 and Studio 8
bundles

For other recommendations, please go to http://www.LibertyAssociates.com and click
on “Books,” then click on “Recommendations,” then “Technical and Programming.”

36 | Chapter 2: Building Web Applications

That was fun. Now, add some substance to the page, beginning with header text. Close
the browser. In Source view, type in the following HTML between the <div> tags:

<h1>AdventureWorks Order Form</h1>

Notice how Intellisense helps by entering the closing tag for you.

Alternatively, in Design view, you can just type in the text on the design surface and
then highlight the text and click on the Block Format drop-down menu in the For-
matting toolbar, as shown in Figure 2-10.

Creating Tables
To position the controls on your page, you’ll need to create a table. If you’re com-
fortable with HTML, you can certainly insert your table row and column tags manu-
ally in Source view and receive assistance from IntelliSense as you go. If you prefer,
however, both VS and VWD offer an insert table wizard.

To see this at work, switch to Design view (some of the procedures that follow can-
not be done in Source view) and position the cursor immediately below the heading
you just entered. Click on the Layout ➝ Insert Table menu item to bring up the insert
table dialog box and enter, for this example, eight rows and two columns, as shown
in Figure 2-11.

Figure 2-10. You can enter this heading in Source view, or you can enter it in Design view, and
apply the formatting with the Block Format drop-down menu.

Controls | 37

Figure 2-11 demonstrates how you can use this dialog to set various attributes for the
table, although you can also adjust these attributes later in the Source view. Click
OK to create the table.

You’ll use this table to align all of the prompts in the left column, and the user input
in the right column. As is typical with most ASP.NET pages, you’ll use HTML to
generate the display text for your prompts, and ASP.NET TextBox controls for most
of the user input. Figure 2-12 shows the end result.

Type in the text shown in the left column in Figure 2-12, and then add the controls
to the right column. For the Customer Name, Address, City, Zip, and E-mail fields,
the controls are simple TextBoxes, so you can just drag them from the Toolbox into
the appropriate table cells. The Password and Comment fields are special TextBoxes
that we’ll cover in the next section. The State field is a drop-down list that we’ll get
to a bit later in this chapter. You can leave those cells empty for the moment. Every
ASP.NET control must have a unique ID, and when you drag your text boxes onto
the page, the IDE will assign a simple default ID for you. We strongly recommend
however, that you rename each text box with a meaningful name to make your code
easier to read and maintain. It is far easier to understand code that refers to txtName
than code that refers to the same field as TextBox1.

Tables, Page Layouts, and the HTML/CSS Debate
To lay out an .aspx page with the necessary precision, you have a number of options.
The two most common and successful of methods are to use either HTML tables or
Cascading Style Sheets (CSS).

Many CSS aficionados believe that HTML should only be used to describe “content,”
and cascading style sheets should be used to describe layout. It would be their position
that HTML tables should be used only to create tabular data, and never as a tool for
manipulating the layout of the page. Certainly it is true that when using HTML tables
for layout, you will find yourself forced to use “nested tables,” that is, tables within
tables (within tables, ad infinitum) to get the level of precise control your page might
need. It is argued that this is not only inefficient but difficult to maintain.

Whatever the theoretical or practical merits of this argument, few would disagree that
the use of HTML tables for layout is a well-established tradition, and is certainly easier
to demonstrate than using CSS. In any case the layouts we will be using for our sample
applications will be simple enough that we will be satisfied with HTML tables for
layout.

ASP.NET provides an ASP.NET Table control, which you can drag onto your form
from the Toolbox. We believe it is more inconvenient than it is worth though because
it does not size properly in design view and it is generally easier, faster, and less
resource-intensive on the web server to use HTML tables.

38 | Chapter 2: Building Web Applications

Figure 2-11. For this example, enter 8 rows and 2 columns in the Insert Table dialog box.

Figure 2-12. You’ll use a two-column table to hold the user prompts and input fields in this
example.

Controls | 39

The TextBox control has a Text property. You can set this property either declara-
tively in your markup page or programmatically in your code behind page. You can
also read from that property programmatically. For example you might write:

Dim city as string
City = txtCity.Text

Setting Properties
There are three ways to set the properties of your controls: in the markup, in the
Properties window, or through a wizard. For example, you can set the font character-
istics for text in a text box in the markup or, again, in the Properties window, as
shown in Figure 2-13.

The TextMode property for text boxes allows you one of three settings: single line,
multi-line, or Password. If you choose password, the text that is entered will appear
as asterisks. Select the TextBox for the password, and change the TextMode property to
Password.

ASP.NET controls treat the font family, or individual character
attributes such as bold, as a property of the TextBox class, while for
HTML controls it would be more typical to use styles, set most typi-
cally from a style sheet. We cover style sheets in Chapter 6.

Now set the TextMode property on the comment text box to MultiLine. Set the Rows
property to 3 to create a three-line comment field. Run your application again to see
how these special text fields work.

Figure 2-13. Use the Font section of the Properties window to set the font characteristics of the
TextBoxes in your page.

40 | Chapter 2: Building Web Applications

Selection Controls
ASP.NET offers a number of different controls to create lists from which the user can
make a selection. These include: the ListBox, the DropDownList, RadioButtons and
RadioButtonLists, CheckBoxes, and CheckBoxLists. All of these controls work more
or less the way you’d expect them to.

While not used for selection, ASP.NET has one more kind of list used for organiza-
tion: the BulletedList. BulletedLists have a BulletStyle property, which can be set to
numbered, lower- or uppercase alphabetic, lower- or uppercase Roman numeral,
disk, circle, square, or a custom image.

Radio button lists and checkbox lists are convenient for creating and grouping more
than one radio button or checkbox at a time. Table 2-1 reviews the use of each of
these different types of selection controls.

Just below the table that gathers the user’s name and address, you want to add a
control to prompt the user to decide whether to provide certain personal informa-
tion. Since the decision is either yes or no—a mutually exclusive choice—we will use
two radio buttons. In Source view, just below the first table, insert the text “Provide
personal information:” Following the text, drag two radio buttons onto your Source
view. Edit the properties for the two radio buttons so they look like this:

<asp:RadioButton ID="rbYes" runat="server" AutoPostBack="True"
 Checked="True" GroupName="grpPersonalInfo"
 Text="Yes"
 ToolTip="Click Yes to gather personal information - no to skip that step" />

<asp:RadioButton ID="rbNo" runat="server" AutoPostBack="True"
 GroupName="grpPersonalInfo"
 Text="No"
 ToolTip="Click Yes to gather personal information - no to skip that step" />

Each radio button has a unique ID; the first, rbYes, and the second, rbNo. You’ll also
notice that they both have the attribute runat="Server". You’ll see this attribute on
all controls that are evaluated at the server; it’s inserted for you automatically.

Table 2-1. Summary of selection controls

Control type Selection Best for?

CheckBox Multiple Short lists

CheckBoxList Multiple Short lists

RadioButton Single Short lists

RadioButtonList Single Short lists

DropDown Single Long lists

ListBox Multiple Long lists

Controls | 41

The text that is displayed next to the RadioButton is assigned in the Text attribute.
The attribute AutoPostBack="True" signals that every time this RadioButton is clicked,
the page will be sent back to the server for processing. RadioButtons are mutually
exclusive within their own grouping, meaning that only one button of the group can
be checked at once. The group is established by assigning each radio button a group
name, with the GroupName property, in this case grpPersonalInfo.

Finally, each of these buttons is assigned a tool tip. In this case the tool tip for each
button is the same, though that need not be true.

Radio buttons get their name from old-fashioned automobile radios
which had mechanical buttons to select the station unlike modern
electronic ones that can be used to select more than one station
depending on other settings on the radio. These old-fashioned radio
buttons physically adjusted the tuner to the desired location. This
design was so standardized across all automobiles, that setting and
using radio buttons in a car required no more thought than using a
water fountain.

For more on this curious idea about self evident design, we highly rec-
ommend the seminal work The Design of Everyday Things by Donald
A. Norman (Basic Books), which along with Don’t Make Me Think by
Steve Krug (New Riders) should be required reading for all web appli-
cation programmers and designers.

Panels
The personal information that you will be gathering will be clustered together within
an ASP.NET Panel control. Panels give you the opportunity to provide a background
color if you choose, or to make the panel itself visible or invisible as a whole.

Begin by dragging a Panel control from the Standard section of the Toolbox into
your Source view and giving it the ID and properties as shown here:

<asp:Panel ID="pnlPersonalInfo" runat="server"
 BorderWidth="1px" Width="300px" BackColor="beige">

Selection Controls
Create an HTML table within the panel, like this:

<table>
 <tr valign="top">
 <td>

The valign property in your first row sets the vertical alignment for all elements
within that row to be top-aligned helping ensure that all of the contents will align
properly.

42 | Chapter 2: Building Web Applications

Create the first cell by inserting the <td> tag, and type “Areas of Interest.” Next, drag
a CheckBoxList control into the cell—after the <td> tag and after the text you just
added. Switch to Design View; the display should look something like Figure 2-14.
Notice the small arrow on the CheckBoxList control; this is a Smart Tag. Smart Tags
are convenient helpers that provide fast access to essential properties for many con-
trols. Clicking on the arrow opens a small menu.

Adding controls with the Item editor

Click the Smart Tag arrow and select the Edit Items… option to add items to the
CheckBoxList control.

With the exception of CheckBox and RadioButton, all the list controls in Table 2-1 hold
a collection of ListItem objects. Each ListItem has a Text property, which is what is
displayed to the user, and a Value property, which you can access programmatically.

This allows you to display text to the user—“Scuba Diving,” for example—but when
the user selects that option, you’ll return a different value to your program—“SC”
perhaps, or “4,” or whatever value will be meaningful in your application.

The ability to tie a “value” to a “Text property” becomes particularly
useful when displaying values retrieved from a database, as we’ll see
later in this book. You can retrieve, for example, all your vendors, and
display them by name, but when one is selected, you can retrieve the
vendorID from the value field.

To add items to your list, click on the Smart Tag, and then on Edit Items… to open
the ListItem Collection Editor, shown in Figure 2-15. The list is empty when you
start, so click the Add button to insert an item. As soon as you add an item, you’ll
see some familiar-looking properties in the box on the right. Click in the Text field
and type “Biking.” Notice that you can set the Text and Value properties separately
if you choose. If you don’t, the Wizard defaults to the same name for both. You can
also set the Selected property to True (causing that item to show as checked). For this

Figure 2-14. The CheckBoxList you just added shows a Smart Tag to help you set the critical
properties of the control.

Controls | 43

specific example, add all the items shown in Figure 2-15, set the Text and Value
properties to the same value, and leave all the items unselected and enabled.

Once you’ve added all the items to your list, click OK to close the dialog box. Return
to the properties dialog and change the ID property of the CheckBoxList to cblAreas.
Set AutoPostBack to True so that each time a checkbox item is checked or unchecked
the page will be sent back to the server for processing.

Adding items in Source View

Click Source view to see the markup. Press Ctrl-F to bring up the Find dialog, and
enter “pnlPersonalInfo” in the Find what box to locate the Panel control. You should
see something like that shown in Figure 2-16.

Notice the CheckBoxList declaration with its end tag. Between the opening and clos-
ing tags are a series of ListItem declarations.

Let’s go back to constructing our table and add a second set of cell tags (<td> </td>)
in the same row as our first cell. Press Enter to create a new line, then use the Tab
key to indent. Type in the following HTML to form a heading:

Age Category

Figure 2-15. When you select “Edit Items” from the Smart Tag, you’ll see the ListItem Collection
Editor, where you can enter each item in the list.

44 | Chapter 2: Building Web Applications

Drag a RadioButtonList control from the Toolbox onto the source view, directly after
the
 tag. Set the ID for the new RadioButtonList to rblAge, AutoPostBack to
True, and the Width to 150. This time, you’ll add ListItems to the radio button list
by hand. Between the opening tag and the closing tag of the radio button list, type
<asp:ListItem>. IntelliSense will help you, as shown in Figure 2-17.

Figure 2-16. The Source view shows the markup for the Panel control, showing the table and the
list items you added.

Figure 2-17. Creating A RadioButtonList by hand. Intellisense completes the ListItem entry for
you.

Controls | 45

You have now added one list item, Under 21, and opened the angle bracket for a sec-
ond ListItem. IntelliSense knows the only possible control that can go in this loca-
tion is an ASP.NET ListItem, and so it offers that option to you. You can click on the
ListItem offered by IntelliSense to explicitly select it, or simply press tab to accept it.

When you enter the closing angle bracket (>), the IDE will immediately create a
closing tag for you:

<asp:ListItem></asp:ListItem>

You need only put your new value between the tags. Thus you can quickly build the
contents of your radio button list. Add the rest of the ListItems now, so the Source
view looks like this:

<asp:RadioButtonList ID="rblAge" runat="server"
AutoPostBack="True" Width="150px">
 <asp:ListItem>Under 21</asp:ListItem>
 <asp:ListItem>21 to 30</asp:ListItem>
 <asp:ListItem>31 to 50</asp:ListItem>
 <asp:ListItem>Over 50</asp:ListItem>
</asp:RadioButtonList>

Now switch back to Design view. You should see something like Figure 2-18.

Figure 2-18. Design view with personal information controls in place in a Panel control.

46 | Chapter 2: Building Web Applications

In the first table, you gathered the user’s name and address. You’ll remember that we
planned to use a drop-down list for the state field. It would be convenient to display
the full name of the state while setting the corresponding value property to the two
letter postal abbreviation.

Go back up to the first table and drag a DropDownList control into the cell for State,
and name the control ddlState. At this point, you have two options for setting the
text and value property: you can either use the ListItem Collection Editor in Design
view, or you can fill in the list items by hand in Source view. Add the following four
items to the DropDownList now, so the Source view looks like this:

<asp:DropDownList ID="ddlState" runat="server">
 <asp:ListItem Value="AL">Alabama</asp:ListItem>
 <asp:ListItem Value="AK">Alaska</asp:ListItem>
 <asp:ListItem Value="CA">California</asp:ListItem>
 <asp:ListItem Value="CT">Connecticut</asp:ListItem>

In a production environment, you would probably retrieve both the
text and the value from columns in a database table.

More Selection Controls
Next, you need to create two more list selection controls, one for the product cate-
gory and one for the subcategory. Begin by inserting a new layout table just as you
did previously, but below pnlPersonalInfo. Give the table one row and four col-
umns. In the first cell, type “Product Category:”; in the third cell, type “SubCategory:”.

Drag to a DropDownList into the second cell and a ListBox into the fourth cell. Using
the Properties window, change the IDs of these two controls and set the following
properties:

Use the Smart Tag and the ListItem Collection Editor, as you did in Figure 2-15 to
enter the following ListItems for each control:

Property DropDownList ListBox

ID ddlCategory lbSubCategory

SelectionMode Single

ToolTip Select a category Select a sub-category

AutoPostBack True True

DropDownList ListBox

Bikes Brakes

Components Handlebars

Clothing Chains

Controls | 47

One final layout tweak: go to Source view, find the HTML <table> currently under
construction, then add a valign attribute to the row tag, <tr valign="top"> to top
align all the elements in the row to the top of the table.

Let’s look at this section of the page in Design view. Figure 2-19 shows how the
product table should appear at this point.

Accessories Cranks

Scuba Bottom Brackets

Parasailing Tires

Wheels

Seats

Derailleurs

Figure 2-19. Design view of the product category lists after adding the last set of selection controls.

DropDownList ListBox

48 | Chapter 2: Building Web Applications

Displaying Text
So far, you’ve created controls that provide choices to the user, but you haven’t seen
how your page knows what items the user selected, or how to do anything with
them. The answer lies in the properties. The DropDownList control, and all of the
other list controls in Table 2-1 (except CheckBox and RadioButton) provide three
properties for retrieving selections: SelectedIndex returns the zero-based index of the
currently selected item, SelectedItem return the Text property of the currently
selected item, and SelectedValue returns the Value property of the currently selected
item.

When a user submits this form, you want to provide feedback regarding the selected
product category, subcategory, and the mailing address to which the purchase will
be sent. A Summary table is the solution.

To demonstrate three different ways of displaying text:

• You’ll display the chosen Category in a label.

• You’ll display the chosen Subcategory in a read-only text box.

• Finally, you’ll display the Mailing Address by modifying the inner HTML of the
table cell itself. (Inner HTML is the content between the opening and closing
tags.)

To begin, you need to create the table. You can type it directly into the source, or use
the Insert Table Wizard we showed you earlier. Whichever method you choose, the
table should end up looking like this in Source view:

Summary

<table>
 <tr valign="top">
 <td>
 Category:
 </td>
 <td>
 <asp:Label ID="CategoryLabel" runat="server" Text="" />
 </td>
 </tr>
 <tr valign="top">
 <td>
 SubCategory:
 </td>
 <td>
 <asp:TextBox ID="SubCategoryTextBox" runat="server"
 ReadOnly="true" />
 </td>
 </tr>
 <tr valign="top">
 <td >
 Mailing Address:
 </td>

Controls | 49

 <td id="tdAddress" runat="server" style="width:200px">
 </td>
 </tr>
</table>

This is a fairly straightforward HTML table. In the left column, type “Category” in
the first row, “SubCategory” in the second, and “Mailing Address” in the third row.

In the right column, place a Label control in the first row with an ID but with its Text
property set to an empty string. You’ll fill that at run time. In the second row, insert
a TextBox control that has its ReadOnly property set to true, so that the user cannot
type into the text box (you’re using it for display only). The third row’s second col-
umn is a bit unusual; the <td> itself has both an id and a runat attribute, meaning
that you can modify the column itself programmatically.

If you want to populate the Summary table, you’ll need to perform a postback to
evaluate and process the code (as discussed in Chapter 1). To do that, you’ll need a
Submit button. In Design view, drag a Button control onto the page just below the
Summary table. Change its ID to btnSubmit, and its text to “Submit.”

The Submit button’s Click event handler will populate the Text of the Label and of
the text button, and will set the inner HTML of the third row’s second column.
Double-click the Submit button from Design view, and you’ll be automatically taken
to the Click event handler in the code behind file. Add the following code to wire up
the functionality:

Protected Sub btnSubmit_Click(_
 ByVal sender As Object, _
 ByVal e As System.EventArgs) _
 Handles btnSubmit.Click

 CategoryLabel.Text = ddlCategory.SelectedItem.Text

 SubCategoryTextBox.Text = lbSubCategory.SelectedItem.Text

 Dim strMailingAddress As String
 strMailingAddress = txtName.Text + "
" + _
 txtAddress.Text + "
" + _
 txtCity.Text + ", " + _

ddlState.SelectedValue + " " + _
 txtZip.Text
 tdAddress.InnerHtml = strMailingAddress
End Sub

Let’s take a closer look at this code. The event handler retrieves the selected item
from the drop down list for Categories (ddlCategory) and asks it for its Text prop-
erty, which it then assigns to the Text property of the CategoryLabel:

CategoryLabel.Text = ddlCategory.SelectedItem.Text

Similarly, the text is retrieved from the SelectedItem property of the ListBox that holds
the SubCategory, and that text is assigned to the Text property of the read-only TextBox:

SubCategoryTextBox.Text = lbSubCategory.SelectedItem.Text

50 | Chapter 2: Building Web Applications

Finally, and this is a bit tricky, the text of the various address fields are retrieved
(including the selected value from the state drop-down), concatenated into a single
string, and assigned to the local variable strMailingAddress. That value is then
assigned to the InnerHtml property of tdAddress. This is, you’ll remember, the ID
assigned to the second <td> tag of the third row. The net result is that the cell is filled
with the address string.

 Dim strMailingAddress As String
 strMailingAddress = txtName.Text + "
" + _
 txtAddress.Text + "
" + _
 txtCity.Text + ", " + _

ddlState.SelectedValue + " " + _
 txtZip.Text
 tdAddress.InnerHtml = strMailingAddress

— V B C H E AT S H E E T —
Variables and Strings

In the first two examples in this section, you simply assigned the Text property of one
control to the Text property of another control; that’s easy enough. But for the third
control, you took the Text properties of several controls, joined them together, and
assigned them as a whole.

The trick to this is using a variable. Simply put, a variable is like a bucket in your code,
which can be used to hold a value. You can retrieve the value later, change it, or replace
it with another value. You don’t need to worry about what the value is when you’re
writing your code; you just need to know the name of the variable. In this case, you’re
using a variable called strMailingAddress to hold the text of the user’s address.

In VB, you create a new variable using the Dim statement, followed by the name you
want to give the variable:

Dim strMailingAddress As String

You then need to give the variable a type, which tells the compiler what kind of data it
can expect to find in the variable. In this example, the variable consists of text, and in
VB a sequence of text is called a string. You use the keyword As to declare a variable
named strMailingAddress, of type String. The important thing to know about strings
is that all string values are surrounded by double quotes ("").

One of the useful things about strings is that you can take two strings and put them
together into a single, longer string. This is called concatenation, and it’s very easy to
do in VB; you just use the + operator. Look at this bit of code:

txtName.Text + "
" + txtAddress.Text + "
"

All this does is take the string in txtName.Text, add to it the string that represents a line
break in HTML (
), add the string from txtAddress.Text, and then add another
line break. All of that gets assigned to the variable strMailingAddress, which in turn
gets assigned to the inner HTML of the <td>.

Controls | 51

The final result is shown in Figure 2-20. Run your application and try it out. When
you enter text in the textboxes and make selections in the category fields, and then
click the Submit button, the Summary table updates with the text you’ve entered.

Images
Images are an important addition to any web site. An image can be a photograph, a
drawing, a logo—any graphic.

ASP.NET provides several controls to work with images.

• An Image control is used to display an image. We will demonstrate this momen-
tarily.

• An ImageButton is used to create an image that can be clicked, thus giving it the
behavior of a normal button.

• An ImageMap control provides an image with multiple clickable hotspots. Each of
the hotspots behaves like a separate hyperlink.

Let’s insert an Image control into the form. To do so, insert some room between the
layout table and the Summary table by hitting the Return key a few times, and drag
on a CheckBox and an Image control. In the properties window, set the CheckBox ID to
cbDisplayPhoto and be sure to set AutoPostBack to True, Checked to True and Text to
“Show product photo?” Also set the TextAlign property to Left.

Set the ID for the image to imgPhoto and the ImageURL to “Dan at Vernal Pool.jpg.”

The Image control has only three essential properties: the ID (so that you can address
the control programmatically), the ubiquitous runat="server", and the ImageUrl that
identifies the location of the image. Since this image is in the base directory of the
application, you do not need a pathname, only the name of the file itself.

Figure 2-20. This is what the Summary Table of the page looks like after the user has entered
values in the top part of the page.

52 | Chapter 2: Building Web Applications

In this example, we are using an image of Dan on a bike ride. You can
download that image along with the source code for this example from
www.LibertyAssociates.com, or use any image file you happen to have
handy.

In this form, the CheckBox control offers the user the opportunity to make the image
visible or not. It has its AutoPostBack property set to true, to force a postback every
time the Checked property changes. To make use of this, of course, you must write an
event handler for the CheckedChanged event. Double-click the CheckBox to create an
event handler for CheckChanged, and add the following highlighted line of code:

Protected Sub cbDisplayPhoto_CheckedChanged(_
 ByVal sender As Object, _
 ByVal e As System.EventArgs) _
 Handles cbDisplayPhoto.CheckedChanged
 imgPhoto.Visible = cbDisplayPhoto.Checked
End Sub

This event handler changes the Visible property of the Image. When the property is
set to false, the image isn’t rendered. Go ahead and try it out. You’ll see that when
you uncheck the box, the page posts back, and the image vanishes.

Links
Hyperlinks provide immediate redirection to another page in the application or to a
location elsewhere on the Internet. We’ll use a HyperLink control to provide a link to
Jesse’s home page, serving here very much the same function as an <a> tag would do
in HTML.

At the bottom of your form, type “For help contact” and then drag on a HyperLink
control. Set the ID to hypContact, its NavigateURL to http://www.LibertyAssociates.
com, and its text (which will become its inner HTML) to Liberty Associates, Inc.
Finally, set the target to “_blank” (we’ll explain this property in just a moment).

— V B C H E AT S H E E T —
Booleans

The Boolean variable is a special type of variable that can have only one of two values:
true or false. They’re very useful for evaluating simple conditions, and taking an
action based on whether the condition is true. In this case, cbDisplayPhoto.Checked is
a Boolean—if the box is checked, cbDisplayPhoto.Checked is equal to true; false if the
box isn’t checked. The imgPhoto.Visible property is also a Boolean, that controls
whether the image is displayed. When you set the value of imgPhoto.Visible to be
equal to whatever cbDisplayPhoto.Checked is, you link the two controls, so that they’re
always true or false together. You’ll see this technique used a lot in this book.

http://www.LibertyAssociates.com
http://www.LibertyAssociates.com
http://www.LibertyAssociates.com

Controls | 53

Switch to Source view, and you’ll see that the markup produced looks like this:

For help, contact
<asp:HyperLink ID="hypContact" runat="server"
 NavigateUrl="http://www.LibertyAssociates.com"
 Target="_blank">
 Liberty Associates, Inc.
</asp:HyperLink>

This last property, Target, specifies in which window or frame the new page will
open. You can specify a window by name, or use one of the special values listed in
Table 2-2.

By setting the value of Target to _blank, clicking on the link instructs the target page
to open in a new browser window.

One significant advantage of using this control over an <a> tag is the ID and
runat="server" properties, which allow you to address the control programmatically.
For example, you could set the NavigateUrl to a different location from within a
method, based on conditions established while the program is running.

LinkButtons
Remember that a hyperlink redirects immediately and does not post back first; thus
there is no server-side processing possible when the user clicks the link. If you want
the appearance of a hyperlink but need to perform server-side processing before
departing for the new page (e.g., to save data to a database) then use a LinkButton
control. The LinkButton behaves like a Button but looks like a HyperLink, and the
behavior is to post back to the server, do its work and then redirect the user to a new
location.

In order to accomplish the redirection to the new page, you’ll need to use the
Response.Redirect method, as shown in the following click event handler:

Protected Sub MyLinkButton_Click(_
 ByVal sender As Object, _
 ByVal e As System.EventArgs) _

Table 2-2. Special values of the Target attribute

Target value Description

_blank Renders the content in a new unnamed window without frames.

_new Not documented, but behaves the same as _blank.

_parent Renders the content in the parent window or frameset of the window or frame with the hyperlink. If
the child container is a window or top-level frame, it behaves the same as _self.

_self Renders the content in the current frame or window with focus. This is the default value.

_top Renders the content in the current full window without frames.

54 | Chapter 2: Building Web Applications

 Handles MyLinkButton.Click
 'Save data to db
 Response.Redirect("http://www.LibertyAssociates.com")
End Sub

Source Code
For your convenience (in case you are away from your computer) the complete
source code is shown below. The OrderForm markup is shown in Example 2-3. The
code behind file is shown directly after in Example 2-4. Note that although this first
example is set up to use AJAX, it does not actually contain any AJAX controls except
for the ScriptManager that is added by the IDE; we’ll add AJAX starting in the next
chapter.

Example 2-3. OrderForm.aspx

<%@ Page AutoEventWireup="true" CodeFile="OrderForm.aspx.vb" Inherits="_Default"
 Language="VB" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title>AdventureWorks</title>
</head>
<body>
 <form id="form1" runat="server">
 <asp:ScriptManager ID="ScriptManager1" runat="server" />
 <div>
 <h1>
 AdventureWorks Order Form
 </h1>
 <table>
 <tr>
 <td >
 Customer Name:
 </td>
 <td >
 <asp:TextBox ID="txtName" runat="server"></asp:TextBox>
 </td>
 </tr>
 <tr>
 <td >
 Address:
 </td>
 <td >
 <asp:TextBox ID="txtAddress" runat="server" />
 </td>
 </tr>
 <tr>
 <td >
 City:</td>

Source Code | 55

 <td >
 <asp:TextBox ID="txtCity" runat="server"
 Font-Bold="True" Font-Names="Arial Black" />
 </td>
 </tr>
 <tr>
 <td >
 State:</td>
 <td >
 <asp:DropDownList ID="ddlState" runat="server">
 <asp:ListItem Value="AL">Alabama</asp:ListItem>
 <asp:ListItem Value="AK">Alaska</asp:ListItem>
 <asp:ListItem Value="CA">California</asp:ListItem>
 <asp:ListItem Value="CT">Connecticut</asp:ListItem>
 <asp:ListItem Value="FL">Florida</asp:ListItem>
 <asp:ListItem Value="PA">Pennsylvania</asp:ListItem>
 <asp:ListItem Value="TX">Texas</asp:ListItem>
 <asp:ListItem></asp:ListItem>
 </asp:DropDownList></td>
 </tr>
 <tr>
 <td >
 Zip:</td>
 <td style="width: 100px">
 <asp:TextBox ID="txtZip" runat="server"></asp:TextBox></td>
 </tr>
 <tr>
 <td >
 E-mail:
 </td>
 <td >
 <asp:TextBox ID="txtEmail" runat="server"></asp:TextBox>
 </td>
 </tr>
 <tr>
 <td >
 Password:
 </td>
 <td >
 <asp:TextBox ID="txtPassword" runat="server"
 TextMode="Password" />
 </td>
 </tr>
 <tr>
 <td>
 Comment:</td>
 <td >
 <asp:TextBox ID="txtComment" runat="server"
 Rows="3" TextMode="MultiLine" Width="300px" />
 </td>
 </tr>

Example 2-3. OrderForm.aspx (continued)

56 | Chapter 2: Building Web Applications

 </table>
 </div>

 Provide personal information:
 <asp:RadioButton ID="rbYes" runat="server" AutoPostBack="True "
 Checked="True" GroupName="grpPersonalInfo"
 Text="Yes"
 ToolTip="Click Yes to gather personal information - no to skip that step" />

 <asp:RadioButton ID="rbNo" runat="server" AutoPostBack="True"
 GroupName="grpPersonalInfo"
 Text="No"

ToolTip="Click Yes to gather personal information - no to skip that step " />
 <asp:Panel ID="pnlPersonalInfo" runat="server"
 BorderWidth="1px" Width="300px" BackColor="beige">
 <table>
 <tr valign="top">
 <td>
 Areas of Interest

 <asp:CheckBoxList ID="cblAreas"
 runat="server" AutoPostBack="True" Width="150px">
 <asp:ListItem>Biking</asp:ListItem>
 <asp:ListItem>Scuba Diving</asp:ListItem>
 <asp:ListItem>Gaming</asp:ListItem>
 <asp:ListItem>Mountain Climbing</asp:ListItem>
 <asp:ListItem>Web Surfing</asp:ListItem>
 <asp:ListItem>Real Surfing</asp:ListItem>
 </asp:CheckBoxList></td>
 <td>
 Age Category

 <asp:RadioButtonList ID="rblAge" runat="server"
 AutoPostBack="True" Width="150px">
 <asp:ListItem>Under 21</asp:ListItem>
 <asp:ListItem>Under 21</asp:ListItem>
 <asp:ListItem>21 to 30</asp:ListItem>
 <asp:ListItem>31 to 50</asp:ListItem>
 <asp:ListItem>Over 50</asp:ListItem>

 </asp:RadioButtonList>
 </td>
 </tr>
 </table>
 </asp:Panel>

 <table>
 <tr valign="top">
 <td>
 Product Category:</td>
 <td style="width: 100px">
 <asp:DropDownList ID="ddlCategory" runat="server"
 ToolTip="Select a category">

Example 2-3. OrderForm.aspx (continued)

Source Code | 57

 <asp:ListItem>Bikes</asp:ListItem>
 <asp:ListItem>Components</asp:ListItem>
 <asp:ListItem>Clothing</asp:ListItem>
 <asp:ListItem>Accessories</asp:ListItem>
 <asp:ListItem>Scuba</asp:ListItem>
 <asp:ListItem>Parasailing</asp:ListItem>
 </asp:DropDownList></td>
 <td>
 SubCategory:</td>
 <td >
 <asp:ListBox ID="lbSubCategory" runat="server"
 ToolTip="Select a sub-category">
 <asp:ListItem>Brakes</asp:ListItem>
 <asp:ListItem>Handlebars</asp:ListItem>
 <asp:ListItem>Chains</asp:ListItem>
 <asp:ListItem>Cranks</asp:ListItem>
 <asp:ListItem>Bottom Brackets</asp:ListItem>
 <asp:ListItem>Tires</asp:ListItem>
 <asp:ListItem>Wheels</asp:ListItem>
 <asp:ListItem>Seats</asp:ListItem>
 <asp:ListItem>Derailleurs</asp:ListItem>
 </asp:ListBox></td>
 </tr>
 </table>

 <asp:CheckBox ID="cbDisplayPhoto"
 runat="server"
 AutoPostBack="True"
 Checked="True"
 Text="Show product photo?"
 TextAlign="Left" />
 <asp:Image ID="imgPhoto"
 runat="server"
 ImageUrl="Dan at Vernal Pool.jpg" />

 Summary

 <table>
 <tr>
 <td style="height: 21px" >
 Category:</td>
 <td>
 <asp:Label ID="CategoryLabel" runat="server" Text="" />
 </td>
 </tr>
 <tr>
 <td >
 SubCategory:</td>
 <td>
 <asp:TextBox ID="SubCategoryTextBox" runat="server"
 ReadOnly="true" />
 </td>
 </tr>

Example 2-3. OrderForm.aspx (continued)

58 | Chapter 2: Building Web Applications

 <tr valign="top">
 <td style="height: 21px" >
 Mailing Address:</td>
 <td id="tdAddress" runat="server" style="width:100px; height: 21px;">
 </td>

 </tr>
 </table>

 <asp:Button ID="btnSubmit" runat="server" Text="Submit" />

 For help, contact
 <asp:HyperLink
 ID="hypContact"
 runat="server"
 NavigateUrl="http://www.LibertyAssociates.com"
 Target="_blank">
 Liberty Associates, Inc.
 </asp:HyperLink>

 </form>
</body>
</html>

Example 2-4. OrderForm.aspx.vb

Partial Class _Default
 Inherits System.Web.UI.Page

 Protected Sub btnSubmit_Click(_
 ByVal sender As Object, _
 ByVal e As System.EventArgs) _
 Handles btnSubmit.Click

 CategoryLabel.Text = ddlCategory.SelectedItem.Text
 SubCategoryTextBox.Text = lbSubCategory.SelectedItem.Text
 Dim strMailingAddress As String
 strMailingAddress = txtName.Text + "
" + _
 txtAddress.Text + "
" + _
 txtCity.Text + ", " + _
 ddlState.SelectedValue + " " + _
 txtZip.Text
 tdAddress.InnerHtml = strMailingAddress
 End Sub

 Protected Sub cbDisplayPhoto_CheckedChanged(_
 ByVal sender As Object, _
 ByVal e As System.EventArgs) _
 Handles cbDisplayPhoto.CheckedChanged
 imgPhoto.Visible = cbDisplayPhoto.Checked
 End Sub

End Class

Example 2-3. OrderForm.aspx (continued)

Summary | 59

Summary
• A postback occurs when an event happens on your page that causes the page to

return to the server, handle the events, and then send the same page back to the
browser. The contents of the page may have changed, but the page object itself is
the same.

• With AJAX, postbacks can be either synchronous, in which case the entire page
is returned to the server, or asynchronous, in which case only part of the page is
returned to the server.

• A control is a tool that lets your web page take an action. It could be as simple as
displaying some text, or as complicated as interacting with a database. Most
controls have some visual representation that the user sees, although not all do.

• Placing a control in your web page is as simple as dragging it from the Toolbox
onto your page; the IDE inserts the appropriate markup for you. Controls all
come with at least a few properties and methods, which you can use to custom-
ize their appearance and behavior, respectively.

• Every control has a unique identifier, its ID property. The IDE assigns a default
ID automatically, but you can (and usually should) rename them to be more
meaningful.

• Almost every control has associated events, as well as properties. You can access
these by clicking the Events button in the Properties window.

• You can create tables by hand in Source view, or you can use the Insert Table
Wizard by selecting Layout ➝ Insert Table in Design view.

• The TextBox control is a relatively simply control that allows the user to enter
text that you can retrieve later. You can change the TextMode property of a
TextBox to create single-line entry fields, multiline fields, or to hide the text for a
password field.

• ASP.NET has a number of selection controls, including the ListBox,
DropDownList, RadioButton, RadioButtonList, CheckBox, and CheckBoxList, which
display various options for the user to choose from. You decide which control to
use based on its appearance, and whether you want the user to be able to make
only one selection from within a list or multiple selections.

• If the AutoPostBack property of a control is set to True, the page is posted back to
the server whenever that control’s value changes.

• Radio buttons can be assigned to a group, by setting each button’s GroupName
property. That ensures that only one button in a group can be checked at a time.
You can also use a RadioButtonList to accomplish the same thing.

• You can use a Panel control to group other controls together, and also to make
the content in the panel visible or invisible as a group.

60 | Chapter 2: Building Web Applications

• Many controls have a Smart Tag, which is a small menu that provides quick
access to the most common tasks for that control. In the case of selection con-
trols, the Smart Tag lets you access the ListItem editor.

• The selection controls each contain a collection of ListItem objects, which you
use to offer the user choices to select from. The Value property of the ListItem
can be different from the Text property that you display to the user, and you can
retrieve the selected value for later use. The ListItem Collection Editor makes it
easy to add ListItems, but you can also add them by hand in Source view.

• There are three properties that let you retrieve the items that users select from a
selection control: SelectedIndex gets the index of the selected item, SelectedItem
gets the Text property, and SelectedValue gets the Value property. You can use
these values to display the selected item in another control, or to use it in other
ways.

• There are several ways to display dynamically generated read-only text in your
page: among others, you can set the property of a Label control, you can use a
read-only TextBox control, or you can set the inner HTML of an HTML element.

• You use an Image control to display an image or graphic. The ImageButton con-
trol displays an image, and acts like a button. An ImageMap control displays an
image that has multiple areas that the user can click, each acting like a hyperlink.

• The Visible property of a control determines whether that control is rendered
on the page. You can change the value of this property programmatically, and
cause the control to appear or disappear with a postback.

• A HyperLink control works like an <a> tag. You can set the NavigateURL property
and the text of the hyperlink separately. You can also specify if the link’s target
will open in a new page or a new frame with the Target property.

You’ve got a lot of things in your toy box now, and you can do a lot more than just
the label and button from HelloWorld in Chapter 1. In fact, in this chapter you’ve
just seen the more common controls—there are many others out there that are more
specialized, such as the Calendar and AdRotator controls, and that’s not even leaving
the General tab of the Toolbox. Feel free to experiment with them. Now that you
have a base to work from, in the next chapter we’ll show you how you can use AJAX
to do some clever things with the plain-vanilla controls you just learned about.

Exercises | 61

B R A I N B U I L D E R

Quiz
1. What is a postback?

2. What are the two types of postbacks in AJAX, and what is the difference
between them?

3. What property is found on every control?

4. What control would you use to have the user enter a password, but keep the text
hidden?

5. What control would you use if you have a list of 20 items, and the user can select
as many as they want?

6. How do you make single radio buttons mutually exclusive?

7. What can you use a Panel control for?

8. What does the SelectedItem property retrieve?

9. How do you include a control on the page, but not render it?

10. What do you do to make the target of a HyperLink control open in a new
window?

Exercises
Exercise 2-1. Now that you’ve played with HelloWorld, you’re going to make a
change to the Postbacks example, so you can see how flexible the UpdatePanel con-
trol is. Open the Postbacks web site, similar to how you opened HelloWorld in the
previous exercise. In Design view, drag another UpdatePanel control inside the first
one, after the button. Drag another Label control inside the new UpdatePanel. In the
Properties window, set the label’s name to lblOtherPartialUpdate, and set its width
to 200px. (Note that you can’t give this label the same name as the other label—or
any other control on the page—or you’ll get an error.) Now add another Button to
the new UpdatePanel, under the label, set its name to btnOtherPartialUpdate, and
change the text to “Another partial-page update:”.

Now you need the event handler for your new button, so double-click it, and you’ll
be taken to the code-behind file. You’ll see the event handlers for the two existing
buttons already there, and the skeleton for the new event handler. Add the following
line of code to this new event handler so it will update with the current time, like the
other two buttons do:

lblOtherPartialUpdate.Text = DateTime.Now

Run your application, and click the buttons. If all went well, you’ll see that each
label updates independently from the others, and that the two buttons in the update

62 | Chapter 2: Building Web Applications

panels don’t cause any page flicker. Your page should look something like
Figure 2-21.

Exercise 2-2. When you’re creating a web page, often knowing which controls to use
is a bigger challenge than using the controls properly. That’s what you’re going to
practice here. Imagine a page for a busy ice cream shop that lets you preorder an ice
cream cone so it will be ready for you when you get to the counter. The page should
have three controls. The first control asks the user to select the type of ice cream
from the following list: Vanilla, Chocolate, Strawberry, Mint, Butter Pecan, Coffee,
Pistachio, Coconut, Bubble Gum, and Cotton Candy. Only one type of ice cream is
allowed per order. The second control asks the user to select the toppings they want:
chocolate sprinkles, rainbow sprinkles, hot fudge, caramel, cookie dough, Oreo
cookies, pretzel bits, walnuts, coffee beans, or crushed candy bars. It’s a gourmet ice
cream shop, so customers can have as many toppings as they like. The third control
asks users to choose a cone or a dish for either ice cream. Obviously, only one is
allowed. Make sure to include a way for users to submit their order.

Exercise 2-3. Now that you’ve made a working page with different controls, it’s time
to try retrieving a value. Create a page with a simple TextBox that asks the user to
enter his or her password. The password should be disguised as the user types it.

Figure 2-21. Your goal for Exercise 2-1. Each label should update independently of the others.

Exercises | 63

Then, with shocking disregard for security, use a label control to repeat the user’s
password back to him. The page should look something like Figure 2-22.

Exercise 2-4. Now you’re ready to try a slightly more complicated example. Create a
drop-down list that presents a number of fine books from your authors; call it
ddlBookList. This time, the Text and Value properties of the ListItems in the drop-
down should be different, according to the following table:

These values are part of each book’s ISBN, and were you a bookstore or a ware-
house, you would probably use a database with these numbers to help keep track of
the books you have in stock. In this case, though, you’ll just show the user what they
selected, including the value. Add two labels to show the results, as shown in
Figure 2-23.

Figure 2-22. Your goal for Exercise 2-3.

Text Value

Programming ASP.NET 00916X

Programming C# 006993

Programming Visual Basic.NET 004385

Learning C# 2005 102097

64 | Chapter 2: Building Web Applications

Figure 2-23. Your goal for Exercise 2-4.

65

Chapter 3 CHAPTER 3

Snappier Web Sites with AJAX3

AJAX has revolutionized ASP.NET, and from this moment forward most ASP.NET
applications will routinely integrate AJAX controls. AJAX moves ASP.NET applica-
tions from being 99% server-side code, to offering the option for a great deal of the
processing to happen on the user’s browser. The net effect is a tremendous increase
in both real and perceived performance of ASP.NET applications.

To demonstrate how much more dynamic and responsive AJAX is, you’ll rewrite the
order form from Chapter 2, applying Ajax techniques. You’ll enhance the site by
adding a watermark to user entry fields. A watermark is a bit of text that appears in
the text field itself, but disappears as soon as the user starts typing. It serves as an ele-
gant prompt to the user. You will also create a pop-up panel to hide controls until
the user needs them, and you’ll add a collapsible text field to display product infor-
mation in a very space-efficient manner.

Take a Walk on the Client Side
While server-based web applications have wonderful advantages, they have the obvi-
ous disadvantage that any time you want to run any code (or retrieve any data) you
must endure the cost of a “round trip” from the browser to the server and back, and
the page must be redrawn from scratch. Round trips can be slow (though the Inter-
net is getting faster all the time) and redrawing the page causes a noticeable flicker.

AJAX (which more accurately should be spelled AJX, but that’s harder to pro-
nounce) is an acronym for Asynchronous JavaScript and XML—that is, it is a tech-
nique for combining well established (some might say old) Internet technology in
new ways to greatly enhance the performance of web applications. AJAX enabled
applications are very hot—they out-perform server-based applications in ways that
would make your jaw drop.

Microsoft, realizing this was not a technology they could ignore, and having learned
the lesson that they must leave open standards open, chose to take this very good
idea and make it much much better, without making it proprietary.

66 | Chapter 3: Snappier Web Sites with AJAX

They did so by combining the power, speed, and flexibility of AJAX with the drag
and drop simplicity of ASP.NET. They created a library of AJAX controls that are as
easy to use as the server-side ASP.NET controls we’ve been using since the Middle
Ages. Even more important, they made it relatively easy to create your own drag and
drop AJAX controls.

AJAX Doesn’t Exist
There really isn’t any such thing as AJAX. It isn’t a product or a standard; it isn’t even
a technology. It is just a way to refer to a set of existing technologies used together in
new ways, to do cool things.

The first use of the term as an acronym for “Asynchronous JavaScript and XML” was
by Jesse James Garrett in February 2005. Garrett thought of the term while in the
shower (if you must know), when he realized the need for a shorthand term to repre-
sent the suite of technologies he was proposing to a client (who, we are assured, was
not in the shower with him).

On the other hand, the first use of the term at all, may have been nearly 3000 years ear-
lier, by Homer, who wrote about Ajax the Great (and also Ajax the Lesser) in the Iliad
(Book 7, 181–312). Ajax the Great was the tallest and strongest of the Achaeans, and
second only to Achilles in skill as a warrior. It isn’t clear if the tale of AJAX-The-Tech-
nology will be told 3,000 years from today (or even 3,000 days); though we’re pretty
certain there is a parallel between the Trojan War and the desktop wars, but that is for
another book.

According to Garret, “AJAX...is really several technologies, each flourishing in its own
right, coming together in powerful new ways.” AJAX incorporates:

• Standards-based presentation using XHTML and CSS; with dynamic display and
interaction using the Document Object Model (DOM). This allows AJAX,
through JavaScript code, to directly manipulate any element on the page.

• Data interchange and manipulation using XML and XSLT, a non-proprietary
and platform independent way of working with data, allowing AJAX to work on
any platform using industry standard technology.

• Asynchronous data requests and retrieval using the XMLHttpRequest object to
request units of information comprising less than an entire page. This has two
very important benefits: much less information needs to be sent “through the
wire,” and the browser can continue working with other portions of a page
while waiting for a response from the server.

• Heavy emphasis on client-side processing, to eliminate as many round trips as
possible and to greatly improve the performance of the application.

• JavaScript binds everything together. Ajax takes advantage of the industry stan-
dard scripting language that is implemented by virtually every browser on every
desktop.

ScriptManager | 67

This means you can get started using Microsoft’s AJAX controls without first learn-
ing how to program in JavaScript or how to write DHTML. That lowers the usabil-
ity bar enough that there really is no reason not to integrate AJAX into all your ASP.
NET applications immediately.

Don’t panic if you like JavaScript and you want to write your own
AJAX controls; you are still free to do so. Just as with custom con-
trols, you can always extend, or even invent if you are so moved.

Now, you can eat your cake and have it too. You can continue to create ASP.NET
applications using the same IDE, but add client side script with asynchronous post-
backs (especially asynchronous data retrieval!), and you can do so with a library of
tested, ready to use controls that fully encapsulate all the JavaScript for you.

The key point, however, is that asynchronous updates improve both the perfor-
mance of your application and the user’s perception of that performance. This is
because the page is not posted back to the server, but instead data is retrieved inde-
pendently of the page being recreated, thus there is no flicker, and data retrieval is far
faster.

ScriptManager
Microsoft realized that the job of integrating the standard ASP.NET controls and pages
with AJAX controls (that encapsulate JavaScript and DHTML) would be difficult,
tedious and repetitious. So they did it for you with the ScriptManager control, ensur-
ing that you have access to a fully tested, reliable control that manages the “grunt”
work. Adding a ScriptManager control to your page (which the IDE does automati-
cally when you create an AJAX-enabled project) solves the problem, and having one on
the page that you don’t need comes at virtually no cost. Here is the declaration that
must appear in every page, and which is put there for you by the IDE:

<asp:ScriptManager ID="ScriptManager1" runat="server" />

The ScriptManager control will also be visible in Design view, as shown in Figure 3-1,
but will not be visible when the web site is run.

Implementing partial-page updates is surprisingly easy using ASP.NET AJAX—you
just leave the ScriptManager’s EnablePartialRendering property set to its default
value of True.

Having done the hard work of not changing that property, you can then drag one or
more UpdatePanel controls onto your page. Each UpdatePanel is updated individually
and asynchronously, without affecting one another or anything else on the page.

That’s it. Instant and unmistakable performance enhancement with almost no pro-
grammer effort.

68 | Chapter 3: Snappier Web Sites with AJAX

To see this dramatic effect, you will modify the AdventureWorks project from the
previous chapter, using update panels to improve performance. Recall in that exam-
ple (shown in Figure 2-9), a pair of radio buttons was created (but never enabled) to
control the visibility of a Panel control whose purpose was to collect personal infor-
mation. You’ll enable that feature now.

Normally, clicking on the radio buttons would cause a postback, which would cause
the page to flicker as it was redrawn. With an AJAX UpdatePanel, however, the
update will be done asynchronously, and there will be no page flicker.

Begin by making a copy of the AdventureWorks Order Form. Call it Adventure-
WorksRevisited. Run it to ensure that it works as expected.

See Appendix A for instructions on copying a web site.

Remove all the controls below the pnlPersonalInfo panel (everything below that
Panel down to—but not including—the closing form tag).

Figure 3-1. The ScriptManager control is visible on the page in Design view, but you won’t see it in
the browser.

ScriptManager control

ScriptManager | 69

You will also need to delete the no-longer relevant event handlers from
the code-behind. (You can easily tell which code-behind methods are
no longer relevant by trying to run the web page and looking at the
build errors.) As it turns out, this includes all the event handlers from
the previous example.

Now add an AJAX UpdatePanel to surround the radio buttons. The finished applica-
tion is shown in Figure 3-2, which shows the panel both visible and hidden.

Let’s give the Yes and No RadioButtons something to do. Select each of the
RadioButton controls and take a look at the Properties window. First, be sure the Text
property is set correctly for each button—Yes or No. Next, set the AutoPostBack prop-
erty for each RadioButton to true. As we mentioned in Chapter 2, when AutoPostBack
is set to true, the RadioButton immediately initiates a postback to the server when it
is clicked, executing any action that should happen.

Figure 3-2. The AdventureWorksRevisited web site with the Panel both visible and hidden. You’ll
see that the AJAX version works much more smoothly than the version from Chapter 2.

70 | Chapter 3: Snappier Web Sites with AJAX

As you saw in Chapter 2, you indicate what action should be taken with event han-
dlers. In Design view, set the event handler for the Yes button by clicking on the
rbYes radio button. In the Properties window, click on the lightning bolt button to
switch from properties to events. You will see that one of the events is
CheckedChanged.

In the space to the right of the event name, enter the text YesNoEventHandler. Press
tab (or Enter) to open the code-behind file, with the cursor positioned in the skele-
ton of the new event handler, ready for you to enter your custom code. Before you
fill in the code for the event handler, though, return to the Design view and click on
the rbNo radio button. Again, click in the space next to the same CheckedChanged
event handler. This time a down arrow will appear. Clicking that arrow will give you
the opportunity to select an existing event handler, as shown in Figure 3-3.

Select YesNoEventHandler. Once again, the IDE will take you directly to the event
handler in the code-behind file. Notice that the Handles statement now shows that
this event handler handles the CheckChanged event for both radio buttons. Add the
text shown highlighted in the following code snippet:

Protected Sub YesNoEventHandler(_
 ByVal sender As Object, _
 ByVal e As System.EventArgs) _
 Handles rbYes.CheckedChanged, rbNo.CheckedChanged
 pnlPersonalInfo.Visible = rbYes.Checked
End Sub

Run the program, and click the Yes and No radio buttons in turn. You should see that
the panel is displayed when the Yes button is checked, and hidden when the No but-
ton is checked. As you saw in the previous chapter, the Visible attribute specifies
whether the panel is rendered, and now you’ve tied it to the value of the rbYes
control.

Figure 3-3. Clicking the arrow next to the property of the CheckChanged control will let you wire
the control to an event handler that’s already created.

ScriptManager | 71

As you click each button, however, you will probably notice a distinct flicker, or jig-
gle in the display, as the entire page is redrawn. There may even be a detectable
delay. This is because each time you click the button, the entire page is sent back to
the server for processing, the event handler is run, and the entire page is sent back to
the browser and redrawn.

AJAX solves this problem by asynchronously updating only portions of a page. By
updating segments “in the background” you avoid reposting and redrawing the
entire page.

In the AdventureWorks example as it is currently written, this post-
back also causes the user’s position on the page to be lost. When the
page is rendered from scratch, the browser effectively scrolls back to
the top of the page, which can be very annoying.

You can rectify this by setting the MaintainScrollPositionOnPostback
property of the Page directive to true. To do so, open the markup file
in Source view and edit the Page directive at the top of the file, adding
the following highlighted code:

<%@ Page Language="VB" AutoEventWireup="true"

 CodeFile="OrderForm.aspx.vb" Inherits="_Default"

 MaintainScrollPositionOnPostback="true"%>

Select the ScriptManager control in Design view and look at the Properties window. If
the Properties window is not visible, right-click on the control and select Properties.
Verify that the EnablePartialRendering property is set to True.

Your goal is to update only the Panel pnlPersonalInfo when the user clicks one of the
radio buttons. To do that, you need to wrap the Panel and the radio buttons inside
an UpdatePanel control, which you’ll find in the AJAX Extensions section in your
Toolbox.

Make sure you are in Design view, open the AJAX Extensions tab of the Toolbox,
and drag an UpdatePanel onto the form (you can do the same in Source view, of
course). Now highlight the prompt, the radio buttons, and the pnlPersonalInfo
Panel, and drag them all onto that UpdatePanel. That’s all there is to it.

Doing this in Source view is very similar: drag the UpdatePanel from
the Toolbox onto the window then move the relevant markup inside
the UpdatePanel.

Run the program again, and then click the radio buttons, to see the difference This
time, there should be no flicker as only the panel reloads. Feel free to say “wow!”

72 | Chapter 3: Snappier Web Sites with AJAX

Extending Controls with the Control Toolkit
The AJAX Control Toolkit provides a number of additional AJAX-enabled controls
you can use to enhance the functionality of your web application. Some of the more
useful controls in the Control Toolkit are listed in Table 3-1.

TextBoxWaterMarkExtender
Many of the Toolkit controls are “extenders”—that is, rather than acting alone, they
extend the behavior of one of the standard controls. For example, the
TextBoxWaterMarkExtender works with a TextBox to add the watermark effect. The
extender has properties to identify which TextBox it will modify, what text will be
used as the watermark, and what style should be applied to the watermark text itself.
Figures 3-4 and 3-5 demonstrate watermarks in action.

Table 3-1. A Sample of the AJAX Toolkit Controls

Toolkit Control Description

Accordion A control that provides multiple panes, only one of which is visible at a time

AlwaysVisibleControlExtender Keeps a control visible as the user scrolls the page

AnimationExtender Helps you animate a panel or other control on your page

CascadingDropDown The user’s selection from one drop down control determines the choices avail-
able in the next drop down

CollapsiblePanelExtender Allows any Panel to collapse and expand

ConfirmButtonExtender When the user clicks a button, a dialog box pops up to confirm the choice

DragPanelExtender Lets the user drag a panel around on the page

FilteredTextBoxExtender Ensures that only “valid” text may be entered into a text box

HoverMenuExtender Pops up a menu when the mouse hovers over a control

MutuallyExclusive-
CheckBoxExtender

Pick none or one of several checkboxes. This provides functionality similar to
radio buttons, but with the ability to uncheck all the checkboxes

NoBot A control which attempts to prevent spam or robot interaction with a web site

NumericUpDownExtender Adds up/down functionality to a TextBox control; can cycle through
numeric values or from a list of provided values

PagingBulletedListExtender Extends a BulletedList control to provide client-side sorted paging

PasswordStrength Helps the user pick a good password

Rating Quick rating, allowing a user to pick the number of stars out of a maximum
number (you could use this, for example, to set up a 4-star [or 5-star, or 10-
star] rating system for restaurant or movie reviews)

ReorderList Lets the user reorder the members of a list by dragging them into place

TextBoxWaterMarkExtender Displays helpful text in a textbox until you start to type

UpdatePanelAnimationExtender Quick animation of a panel; move, resize, fade

ValidatorCalloutExtender Extends ASP.NET validation controls by displaying a warning with an image if
the field isn’t valid

Extending Controls with the Control Toolkit | 73

To demonstrate the watermark effect, copy the previous example, AdventureWorks-
Revisited, to a new web site called AdventureWorksWaterMarks.

Before modifying the page, you need to create a style sheet that will specify the styles
for the watermarked and unwatermarked text.

Styles and style sheets are explained fully in Chapter 6, so we will only
show the bare basics here.

To create a style sheet, click Website ➝ Add New Item…. In the Add New Item dia-
log box, select Style Sheet, accept the default name of StyleSheet.css, and then click
the Add button, as shown in Figure 3-6.

This will open a style sheet in the editor with an empty body element. Add the high-
lighted code from Example 3-1 to this style sheet.

Figure 3-4. This is what the watermarked control looks like before the user enters any data. The
watermark serves as a reminder of what the user should enter, and makes it clear that the field is
currently empty.

Figure 3-5. When the user types in the TextBox, the unwatermarked style is applied, which shows
an obvious change from the watermarked style.

Example 3-1. StyleSheet.css for watermarks

body {
}
.watermarked {
 padding:2px 0 0 2px;
 border:1px solid #BEBEBE;
 background-color:#F0F8FF;
 color:Gray;
 font-family:Verdana;
 font-weight:lighter;
}
.unwatermarked {
 height:18px;
 width:148px;
 font-weight:bold;
}

74 | Chapter 3: Snappier Web Sites with AJAX

In this code, you’re adding two style classes, watermarked and unwatermarked, that
will be applied to the text in the example.

Next, in Design view, go to OrderForm.aspx. Select the Customer Name Text Box,
txtName, and in the Properties window, set the CssClass property to unwatermarked.
(The style class names are case sensitive.) Do the same for txtAddress. This sets the
style class that will apply to the text the user types into these text boxes, as illus-
trated in Figure 3-5.

Open the AJAX Control Toolkit section of the Toolbox, and drag a
TextBoxWatermarkExtender control into the same table cell as txtName. Change the ID
property of the control to CustomerNameWatermark and TargetControlID property to
txtName. The ID property is the same as the ID properties for all the other controls
you’ve seen so far, but the TargetControlID property specifies the control that you
want the watermark effect to apply to—in this case, it’s the TextBox control, txtName.
The screen should look something like Figure 3-7. (Note that we’ve ordered the
properties window alphabetically.)

There are two other properties you need to set for this control: WatermarkCssClass
and WatermarkText. Unfortunately, these properties are not accessible through the
Properties window, so you need to switch to Source view to manually type them in.
Before you do that, though, drag another TextBoxWatermarkExtender control into the
table cell that contains txtAddress, and set its ID to CustomerAddressWatermark and its
TargetControlID property to txtAddress.

Figure 3-6. To add a style sheet to the web site, use the Add New Item dialog box.

Extending Controls with the Control Toolkit | 75

Now switch to Source view and add the WatermarkCssClass and WatermarkText
attributes. Add those two lines of code to each control, so that the result looks like
Example 3-2.

Figure 3-7. Add the TextBoxWatermarkExtender control to the form and set its ID and
TargetControlID properties.

Example 3-2. TextBoxWatermarkExtender markup

<tr>
 <td style="width: 100px">
 Customer Name:
 </td>
 <td style="width: 150px">
 <asp:TextBox ID="txtName" runat="server"

CssClass="unwatermarked" >
 </asp:TextBox>
 <cc1:TextBoxWatermarkExtender
 ID="CustomerNameWatermark"
 runat="server"
 TargetControlID="txtName"
 WatermarkCssClass="watermarked"
 WatermarkText="Your name" >
 </cc1:TextBoxWatermarkExtender
 </td>
</tr>
<tr>
 <td style="width: 100px">
 Address:</td>
 <td style="width: 150px">
 <asp:TextBox ID="txtAddress" runat="server"
 CssClass="unwatermarked" >
 </asp:TextBox>

76 | Chapter 3: Snappier Web Sites with AJAX

This is the code that adds the watermark itself to the TextBox control, before the user
types anything in. The WatermarkText property sets the text that will appear in the
TextBox, and the WatermarkCssClass property applies the style class that you defined
earlier in the style sheet. The result is that the TextBox fields have nicely styled
reminder text in them before the user types anything, as you saw in Figure 3-4.

One final step is to add the following line of HTML to the markup file, inside the
<head> element in order to make the style sheet visible to the page. Without this line,
none of the style classes you created earlier will apply to the page:

<style type="text/css">@import url(StyleSheet.css);</style>

Now run the page. The Customer Name and Address fields will look like Figure 3-4.
When you type in the text box, the change is noticeable and removes any potential
confusion, as shown in Figure 3-5.

PopupControlExtender
Screen real estate on a web page is often at a premium, so the PopupControlExtender is a
very useful tool for presenting the maximum information in a minimum of space. You
attach a PopupControlExtender to a control. When the user clicks the control a pop-up
window appears with additional content. If you put an UpdatePanel into the pop up, it
can display data retrieved asynchronously from the server—a very powerful effect.

To see how you can make this feature work for you, you’ll modify the previous
example, replacing the RadioButtonList used for selecting an age category with a
TextBox. You’ll add a PopupControlExtender and attach it to the TextBox. The
PopupControlExtender will use an UpdatePanel to present the RadioButtonList as a pop
up.

Figure 3-8 shows the TextBox waiting to be clicked on. To prompt the user to click
inside the TextBox, there’s also a TextBoxWatermarkExtender.

Figure 3-9 shows what happens when the user clicks in the TextBox. The watermark
disappears, and the pop-up window appears, containing the RadioButtonList show-
ing the categories the user may pick from. Because the list is inside an UpdatePanel,
there is no postback to the server (and thus no screen flicker); everything happens on
the client side.

 <cc1:TextBoxWatermarkExtender
 ID="CustomerAddressWaterMark"
 runat="server"
 TargetControlID="txtAddress"
 WatermarkCssClass="watermarked"
 WatermarkText="Home address" >
 </cc1:TextBoxWatermarkExtender
 </td>
</tr>

Example 3-2. TextBoxWatermarkExtender markup (continued)

Extending Controls with the Control Toolkit | 77

When the user chooses a radio button, the choice is “posted back,” but again, using
an UpdatePanel, so the rest of the page is unaffected. The panel closes and the choice
is displayed in the TextBox, as shown in Figure 3-10.

Figure 3-8. The TextBox has a PopupControlExtender attached to it, and also a
TextBoxWatermarkExtender to invite users to click it.

Figure 3-9. When the user clicks on the TextBox with the PopupControlExtender, the pop-up panel
opens, showing the radio buttons.

Figure 3-10. After the user makes a selection, the UpdatePanel is closed and the TextBox is updated.

TextBox with WatermarkExtender
and PopupControlExtender

78 | Chapter 3: Snappier Web Sites with AJAX

To implement this example, copy the previous example, AdventureWorksWatermarks,
to a new web site, called AdventureWorksPopupControl. First we will do all the drag-
ging and dropping and coding, and then we’ll follow with an explanation of how it
all works.

The previous example had the following markup for the layout table cell containing
the Age Category caption and radio buttons:

<td style="width: 1024px">
 Age Category

 <asp:RadioButtonList ID="rblAge" runat="server"
 AutoPostBack="True" Width="125px">
 <asp:ListItem>Under 21</asp:ListItem>
 <asp:ListItem>21 to 30</asp:ListItem>
 <asp:ListItem>31 to 50</asp:ListItem>
 <asp:ListItem>Over 50</asp:ListItem>
 </asp:RadioButtonList>
</td>

In Design view, drag a standard TextBox control from the Toolbox to the cell that
currently contains rblAge. Set its ID property to txtAgeCategory, and its Width prop-
erty to 175px. Next, from the AJAX Control Toolkit section of the Toolbox, drag a
TextBoxWatermarkExtender and a PopupControlExtender into the same table cell. Also,
drag a standard Panel control into the cell and set its ID property to
pnlAgeCategories.

Set the TargetControlID property of the TextBoxWatermarkExtender to txtAgeCategory
(the ID of new TextBox). You also want to set its WatermarkText property to “Click
here for age categories” (you will need to switch to Source view because that prop-
erty is not visible in Design view). You could also set the WatermarkCssClass prop-
erty, as we did in the previous section, but we will not bother to do so here.

While still in Source view (again, not all the properties are visible in Design view), set
the properties of the PopupControlExtender. Set the TargetControlID to the ID of the
TextBox (txtAgeCategory). This will cause the pop up to appear when txtAgeCategory
is clicked. Set PopupControlID to pnlAgeCategories. This is the control that will pop
up when the TextBox is clicked (you will populate that Panel in a moment). Finally,
set the Position property of the PopupControlExtender to Bottom.

Now you need to populate the Panel. Switch back to Design view, and then from the
AJAX Extensions section of the Toolbox, drag an UpdatePanel control into
pnlAgeCategories. Next, drag the pre-existing RadioButtonList (rblAge) inside the
UpdatePanel you just placed.

You could stop right here and this would work as is, but edit the RadioButtonList to
add explicit Value properties to each of the items. Click on the Smart Tag of the
RadioButtonList, then Edit Items to bring up the ListItem Collection Editor, as
shown in Figure 3-11.

Extending Controls with the Control Toolkit | 79

Click on each of the Members in turn, and change the Value properties as follows:

When you have modified all the values, the Design view should look something like
that shown in Figure 3-12.

Take a moment to switch back to Source view and look at the mark up
that was generated by the IDE. You are of course, free to create this
directly in Source view, but note that you will need to place a
<contentTemplate> within the <updatePanel>. This is done for you
automatically when you use drag and drop in Design view.

The final step is to create an event handler for the RadioButtonList control (rblAge)
to handle a selection change. You can do this easily, as you’ve seen before—double-
click on rblAge in Design view. This will open up the code-behind file, create a

Figure 3-11. After clicking the Smart Tag of the RadioButtonList, you get this ListItem Collection
Editor for editing the items in the list.

Text Value

Under 21 Under 21 - Enjoy it!

21 to 30 21 to 30 - Livin’ Large

31 to 50 31 to 50 - Life Is Good

Over 50 Over 50 - Golden Years

80 | Chapter 3: Snappier Web Sites with AJAX

skeleton event handler called rblAge_SelectedIndexChanged, and then place the cur-
sor inside that method, ready for typing. Enter the following line of code:

PopupControlExtender1.Commit(rblAge.SelectedValue.ToString())

This line of code will be executed each time the user changes the selection within the
RadioButtonList. The value the user selected is converted to a string (with ToString())
and the Commit method is called to tell the PopupControlExtender to force the page to
automatically update itself.

The ToString() method is a special method that converts text values
to a string so that they can be displayed in a label or another appropri-
ate control.

Looking at the Source view, the table cell containing the Age Category components
should now look like the code in Example 3-3.

Figure 3-12. The Design view of your form with the PopupControlExtender in place. Notice the
UpdatePanel with the RadioButtonList inside it.

Extending Controls with the Control Toolkit | 81

Don’t Panic! While this looks complicated, it breaks down very simply.

All you have is a TextBox control (with an ID of txtAgeCategory), two extenders, and
a Panel control. The first extender is a TextBoxWaterMarkExtender, and the second is a
PopupControlExtender (their relative order is incidental). Both extenders have a
TargetControlID attribute and they are both set to the ID of the TextBox
(txtAgeCategory), which makes perfect sense. The PopupControlExtender and the
TextBoxWaterMarkExtender are each “extending” the behavior of the TextBox named
txtAgeCategory, so they both have txtAgeCategory as a common target.

Example 3-3. PopupControlExtender control

<td style="width: 1024px">
 Age Category

 <asp:TextBox ID="txtAgeCategory" runat="server" Width="175px">
 </asp:TextBox>

 <cc1:TextBoxWatermarkExtender ID="TextBoxWatermarkExtender1"
 runat="server"
 TargetControlID="txtAgeCategory"
 WatermarkText="Click here for age categories">
 </cc1:TextBoxWatermarkExtender>

 <cc1:PopupControlExtender ID="PopupControlExtender1"
 runat="server"
 TargetControlID="txtAgeCategory"
 PopupControlID="pnlAgeCategories"
 Position="Bottom">
 </cc1:PopupControlExtender>

 <asp:Panel ID="pnlAgeCategories" runat="server" Height="50px"
 Width="125px">
 <asp:UpdatePanel ID="UpdatePanel2" runat="server">
 <ContentTemplate>
 <asp:RadioButtonList ID="rblAge" runat="server"
 AutoPostBack="True" Width="125px"
 OnSelectedIndexChanged="rblAge_SelectedIndexChanged">
 <asp:ListItem Value="Under 21 - Enjoy it!">
 Under 21</asp:ListItem>
 <asp:ListItem Value="21 to 30 - Livin' Large">
 21 to 30
 </asp:ListItem>
 <asp:ListItem Value="31 to 50 - Life Is Good">
 31 to 50
 </asp:ListItem>
 <asp:ListItem Value="Over 50 - Golden Years">
 Over 50
 </asp:ListItem>
 </asp:RadioButtonList>
 </ContentTemplate>
 </asp:UpdatePanel>
 </asp:Panel>
</td>

82 | Chapter 3: Snappier Web Sites with AJAX

The TextBoxWaterMarkExtender stands on its own, but the PopupControlExtender
needs a bit of help. It not only needs to know its target (who is it popping up for) but
it also needs to know the ID of its PopupControl—that is, the control it will pop up
when it is time to go “Pop!”

In this case, the control it is popping up is pnlAgeCategories, which is an ASP.NET
Panel control, and which serves to “hold” other controls within it. The first control
held within this Panel is an UpdatePanel named UpdatePanel2. As you know, any-
thing within an UpdatePanel is updated asynchronously, so you place the
RadioButtonList right into the UpdatePanel.

The RadioButtonList itself consists of a series of ListItems. A ListItem may have two
very important properties (and in this case, it does)—the text to display (placed
between the opening and closing brackets) and a Value property. The Value property
can come in handy—it gives the programmer a way to say “what value is attached to
the selected radio button” and not necessarily get back only the text that was displayed.

You also added an event handler for the SelectedIndexChanged event of the
RadioButtonList. Each time the user picks a radio button, the method that you desig-
nate (in this case rblAge_SelectedIndexChanged) will be called, allowing the control to
react to the change. The way to react in this case is to get the value stashed away
with the button, and display it in the text box. The way you do this is to call the
Commit method of the PopupControlExtender.

The Position property of the PopupControlExtender is set to Bottom, which places the
pop-up window below the target control. The options available for the Position
property are Bottom, Center, Left, Right, and Top.

CollapsiblePanelExtender
The CollapsiblePanelExtender control extends the standard Panel control, allowing
it to collapse and expand. This allows you to add regions to the page which the user
can collapse and expand at will. A typical use for the collapsible extender would be a
product detail sheet that the user can display if interested.

In our case, we’ll fill the panel with text and a photo of one of the authors so that his
kids will believe he really contributed to this book, however little.

Lorem Ipsum has been the printing industry’s standard placeholder
text for over 600 years, and it is typically called greeking by typogra-
phers. The text is designed to allow the reader to ignore the words and
focus on the layout, though it does have its roots in Cicero’s finibus
bonorum et malorum (The Purpose of Good and Evil).

You can hide or expand the panel at will. When the CollapsiblePanelExtender is
collapsed, the page will look something like Figure 3-13. When it is expanded, it will
look like Figure 3-14.

Extending Controls with the Control Toolkit | 83

Figure 3-13. When the CollapsiblePanelExtender is collapsed, it hides out of the way, with only the
arrow indicating it’s there.

Figure 3-14. When the user clicks the arrow, the CollapsiblePanelExtender is expanded, showing
the text and images.

84 | Chapter 3: Snappier Web Sites with AJAX

To create this example, copy the previous web site, AdventureWorksPopupControl,
to a new web site called AdventureWorksCollapsiblePanelExtender. See Appendix A
for instructions on copying web sites.

In Design view, drag a standard ASP.NET Panel control (not an AJAX UpdatePanel)
from the Standard section of the Toolbox onto your page, below the other controls
already on the page. Set the ID of that Panel to pnlProductInfoHeader. Within the
Panel, you need the image for the collapse button and the text to tell the user what is
inside the collapsed panel. For the graphic, drag a standard Image control into the
Panel, then use the Properties window to set its ID to imgProductInfo_ToggleImage
and its ImageUrl property to collapse.jpg. Type the text “Product Information”
directly into the Panel.

The arrow graphics seen above the words “Product Information” in
Figures 3-13 and 3-14, are called collapse.jpg and expand.jpg respec-
tively. Both images are available with the downloadable code. In order
to select these, or any image files directly from the Properties window,
you must first add the image files to the web site by using the Website
➝ Add Existing Item… menu item.

The markup for this Panel, which you can see by switching to Source view, should
look something like this:

<asp:Panel ID="pnlProductInfoHeader" runat="server" >
 <asp:Image ID="imgProductInfo_ToggleImage"
 runat="server" ImageUrl="~/collapse.jpg" />
 Product Information
</asp:Panel>

It doesn’t much matter in this Image declaration if you set the ImageUrl
to expand.jpg or collapse.jpg, because the CollapsiblePanelExtender
control will actually be controlling which image is displayed.

Below that panel, drag a second Panel onto the design surface. This panel will con-
tain the contents of the “expanded” Panel. Using the Properties window, set the ID to
pnlProductInfo, set its BackColor to LightGray (from the Web tab of the color picker),
and set its Width to 450. From the Toolbox, drag a standard Label control and a stan-
dard Image control into this Panel. In either Design or Source view, set the ID and
Text properties of the Label, along with the ID and ImageUrl properties of the Image
control, as shown in the following code snippet:

<asp:Panel ID="pnlProductInfo" runat="server" BackColor="lightgray" Width="450px">

 <asp:Label ID="myLabel" runat="server" Text="
 Lorem ipsum dolor sit amet, consectetuer adipiscing elit.
 Aliquam eleifend, turpis sit amet tincidunt euismod, urna eros mattis
 neque, vitae facilisis nulla dui ut dolor. Proin pretium. Etiam ultrices
 eleifend neque. Mauris vestibulum purus quis nibh. Phasellus dignissim.

Extending Controls with the Control Toolkit | 85

 Vivamus laoreet magna id purus. In hac habitasse platea dictumst. Vivamus
 congue elit quis arcu. Sed lorem mauris, convallis non, porta sed, interdum
 id, nisl. Aenean id tortor. Sed ac quam. Suspendisse ornare luctus sapien.
 Praesent aliquet, lacus nec venenatis placerat, massa metus mattis dolor,
 non eleifend pede sapien et lorem. Curabitur dapibus faucibus nunc." />

 <asp:Image ID="Image1" runat="server"
 ImageUrl="Dan at Vernal Pool.jpg" />

</asp:Panel>

With the collapsed and expanded Panels in place, you can now add the AJAX con-
trol—the CollapsiblePanelExtender—and set its attributes. Drag a CollapsiblePanel-
Extender from the AJAX Control Toolkit section of the Toolbox onto the page below
all the existing code. Set its ID to cpeProductInfo then set all the other properties to
match the following control declaration:

<cc1:collapsiblepanelextender
 id="cpeProductInfo" runat="server"
 CollapseControlID="pnlProductInfoHeader"
 Collapsed="true"
 CollapsedImage="expand.jpg"
 CollapsedText="Product Information (Show Details...)"
 ExpandControlID="pnlProductInfoHeader"
 ExpandedImage="collapse.jpg"
 ExpandedText="Product Information (Hide Details...)"
 ImageControlID="imgProductInfo_ToggleImage"
 SuppressPostBack="true"
 TargetControlID="pnlProductInfo" />

Here again, you must use Source view as this is another of the properties that are not
accessible in Design view.

The Design view of the web site will look something that shown in Figure 3-15.

The meaning of these properties is as follows:

CollapseControlID / ExpandControlID
The controls that will expand or collapse the panel on a click, respectively. If
these values are the same, as they are in this example, the panel will toggle its
state with each click. Set both of these to pnlProductInfoHeader.

Collapsed
Indicates the initial state of the collapsible Panel. For this example, set to true, it
will start out in the collapsed state; if this is set to false, it will start out open.
You would usually want the panel to start out collapsed.

ImageControlID
The ID of an Image control into which an icon indicating the status (collapsed
or expanded) of the Panelwill be placed. The extender will replace the source
of this Image with the CollapsedImage and ExpandedImage URLs as appropriate.
If the ExpandedText or CollapsedText properties are set, they are used as the

86 | Chapter 3: Snappier Web Sites with AJAX

alternate text for the image, also displaying as a tool tip. Set this to
imgProductInfo_ToggleImage.

CollapsedImage
The path to an image used by ImageControlID when the Panelis collapsed. If the
Panelis collapsed, you want readers to see an icon indicating that they can
expand it. Therefore, set this property to expand.jpg.

CollapsedText
The text to show in the control specified by CollapseControlID when the Panelis
collapsed. This text is used as the alternate text of the image if ImageControlID is
set, also displaying as a tool tip. Set this to “Product Information (Show
Details…).”

ExpandDirection
This property can be set to Vertical or Horizontal to determine whether the
Panelexpands top-to-bottom or left-to-right. For this exercise, set it to Vertical.

ExpandedImage
The path to an image used by ImageControlID when the Panelis expanded. If the
Panel is expanded, you want readers to see an icon indicating that they can col-
lapse it. Therefore, set this to collapse.jpg.

Figure 3-15. Design view of the AdventureWorksCollapsiblePanelExtender web site showing the
Panel control to be extended and the CollapsiblePanelExtender control that does the extending.

Source Code Listing | 87

ExpandedText
The text to show in the control specified by ExpandControlID when the Panel is
expanded. This text is used as the alternate text of the image if ImageControlID is
set, also displaying as a tool tip. Set this text to “Product Information (Hide
Details…).”

SuppressPostBack
If set to true, ensures that the control does not cause a post back when the con-
trol is expanded or contracted. That’s what you want, so set this property to
true.

TargetControlID
The control that will be expanded or collapsed, in this case the pnlProductInfo.
The key thing to realize here is that the CollapsiblePanelExtender does not itself
expand or collapse, it is used to expand and collapse a different control and this
attribute (TargetControlID) identifies the panel it will extend.

Run the web site and you will initially see the Panel collapsed, as shown back in
Figure 3-13. Click on the icon above Product Information and the Panel expands,
displaying its information, as shown in Figure 3-14.

Source Code Listing
The complete source code for the example in this chapter is shown in Example 3-4.

Example 3-4. OrderForm.aspx

<%@ Page Language="VB" AutoEventWireup="true" CodeFile="OrderForm.aspx.vb"
Inherits="_Default" %>

<%@ Register Assembly="AjaxControlToolkit" Namespace="AjaxControlToolkit"
TagPrefix="cc1" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <style type="text/css">@import url(StyleSheet.css);</style>
 <title>AdventureWorks CollapsiblePanelExtender</title>
</head>
<body>
 <form id="form1" runat="server">
 <asp:ScriptManager ID="ScriptManager1" runat="server" />
 <div>
 <h1>AdventureWorks Order Form</h1>
 <table>
 <tr>
 <td style="width: 100px">
 Customer Name:</td>
 <td style="width: 100px">

88 | Chapter 3: Snappier Web Sites with AJAX

 <asp:TextBox ID="txtName" runat="server"
 CssClass="unwatermarked">
 </asp:TextBox>
 <cc1:TextBoxWatermarkExtender runat="server"
 ID="CustomerNameWatermark"
 TargetControlID="txtName"
 WatermarkCssClass="watermarked"
 WatermarkText="Your name">
 </cc1:TextBoxWatermarkExtender>
 </td>
 </tr>
 <tr>
 <td style="width: 100px">
 Address:</td>
 <td style="width: 100px">
 <asp:TextBox ID="txtAddress" runat="server"
 CssClass="unwatermarked"></asp:TextBox>
 <cc1:TextBoxWatermarkExtender runat="server"
 ID="CustomerAddressWatermark"
 TargetControlID="txtAddress"
 WatermarkCssClass="watermarked"
 WatermarkText="Home address">
 </cc1:TextBoxWatermarkExtender>
 </td>
 </tr>
 <tr>
 <td style="width: 100px">
 City:</td>
 <td style="width: 100px">
 <asp:TextBox ID="txtCity" runat="server"></asp:TextBox>
 </td>
 </tr>
 <tr>
 <td style="width: 100px">
 State:</td>
 <td style="width: 100px">
 <asp:DropDownList ID="ddlState" runat="server">
 <asp:ListItem Value="AL">Alabama</asp:ListItem>
 <asp:ListItem Value="AK">Alaska</asp:ListItem>
 <asp:ListItem Value="CA">California</asp:ListItem>
 <asp:ListItem Value="CT">Connecticut</asp:ListItem>
 <asp:ListItem Value="FL">Florida</asp:ListItem>
 <asp:ListItem Value="PA">Pennsylvania</asp:ListItem>
 <asp:ListItem Value="TX">Texas</asp:ListItem>
 <asp:ListItem></asp:ListItem>
 </asp:DropDownList>
 </td>
 </tr>
 <tr>
 <td style="width: 100px">
 Zip:</td>

Example 3-4. OrderForm.aspx (continued)

Source Code Listing | 89

 <td style="width: 100px">
 <asp:TextBox ID="txtZip" runat="server"></asp:TextBox>
 </td>
 </tr>
 <tr>
 <td style="width: 100px">
 E-mail:</td>
 <td style="width: 100px">
 <asp:TextBox ID="txtEmail" runat="server"></asp:TextBox>
 </td>
 </tr>
 <tr>
 <td style="width: 100px">
 Password:</td>
 <td style="width: 100px">
 <asp:TextBox ID="txtPassword" runat="server"
 TextMode="Password"></asp:TextBox></td>
 </tr>
 <tr>
 <td style="width: 100px">
 Comment:</td>
 <td style="width: 100px">
 <asp:TextBox ID="txtComment" runat="server" Rows="3"
 TextMode="MultiLine" Width="300px"></asp:TextBox>
 </td>
 </tr>
 </table>
 </div>
 <asp:UpdatePanel ID="UpdatePanel1" runat="server">
 <ContentTemplate>
 Provide personal information:
 <asp:RadioButton ID="rbYes" runat="server" AutoPostBack="True"
 Checked="True"
 GroupName="grpPersonalInfo"
 Text="Yes" ToolTip="Do gather personal info" />
 <asp:RadioButton ID="rbNo" runat="server" AutoPostBack="True"
 GroupName="grpPersonalInfo"
 Text="No" ToolTip="Do not gather personal info" />

 <asp:Panel ID="pnlPersonalInfo" runat="server" BorderWidth="1px">
 <table>
 <tr valign="top">
 <td >
 Areas of Interest

 <asp:CheckBoxList ID="cblAreas" runat="server"
 AutoPostBack="True" Width="150px">
 <asp:ListItem>Biking</asp:ListItem>
 <asp:ListItem>Scuba Diving</asp:ListItem>
 <asp:ListItem>Gaming</asp:ListItem>
 <asp:ListItem>Mountain Climbing</asp:ListItem>
 <asp:ListItem>Web Surfing</asp:ListItem>
 <asp:ListItem>Real Surfing</asp:ListItem>
 </asp:CheckBoxList></td>

Example 3-4. OrderForm.aspx (continued)

90 | Chapter 3: Snappier Web Sites with AJAX

 <td style="width: 121px">
 Age Category

 <asp:TextBox ID="txtAgeCategory" runat="server"
 Width="175px">
 </asp:TextBox>

 <cc1:TextBoxWatermarkExtender
 ID="TextBoxWatermarkExtender1" runat="server"
 TargetControlID="txtAgeCategory"
 WatermarkText="Click here for age categories">
 </cc1:TextBoxWatermarkExtender>
 <cc1:PopupControlExtender ID="PopupControlExtender1"
 runat="server"
 TargetControlID="txtAgeCategory"
 PopupControlID="pnlAgeCategories"
 Position="Bottom">
 </cc1:PopupControlExtender>
 <asp:Panel ID="pnlAgeCategories" runat="server"
 Height="50px" Width="125px">
 <asp:UpdatePanel ID="UpdatePanel2" runat="server">
 <ContentTemplate>
 <asp:RadioButtonList ID="rblAge" runat="server"
 AutoPostBack="True" Width="150px"
 OnSelectedIndexChanged="rblAge_SelectedIndexChanged">
 <asp:ListItem Value="Under 21 - Enjoy it!">Under 21
 </asp:ListItem>
 <asp:ListItem Value="21 to 30 - Livin' Large">21 to 30
 </asp:ListItem>
 <asp:ListItem Value="31 to 50 - Life Is Good">31 to 50
 </asp:ListItem>
 <asp:ListItem Value="Over 50 - Golden Years">Over 50
 </asp:ListItem>
 </asp:RadioButtonList>
 </ContentTemplate>
 </asp:UpdatePanel>
 </asp:Panel>
 </td>
 </tr>
 </table>
 </asp:Panel>
 </ContentTemplate>
 </asp:UpdatePanel>

 <asp:Panel ID="pnlProductInfoHeader" runat="server"
 Height="50px" Width="125px">
 <asp:Image ID="imgProductInfo_ToggleImage" runat="server"
 ImageUrl="collapse.jpg" />

 Product Information</asp:Panel>
 <asp:Panel ID="pnlProductInfo" runat="server" BackColor="LightGray"
 Width="450px">
 <asp:Label ID="myLabel" runat="server" Text=

Example 3-4. OrderForm.aspx (continued)

Source Code Listing | 91

The code-behind for this page is contained in Example 3-5.

 "Lorem ipsum dolor sit amet, consectetuer adipiscing elit.
 Aliquam eleifend, turpis sit amet tincidunt euismod, urna eros mattis
 neque, vitae facilisis nulla dui ut dolor. Proin pretium. Etiam ultrices
 eleifend neque. Mauris vestibulum purus quis nibh. Phasellus dignissim.
 Vivamus laoreet magna id purus. In hac habitasse platea dictumst. Vivamus
 congue elit quis arcu. Sed lorem mauris, convallis non, porta sed, interdum
 id, nisl. Aenean id tortor. Sed ac quam. Suspendisse ornare luctus sapien.
 Praesent aliquet, lacus nec venenatis placerat, massa metus mattis dolor,
 non eleifend pede sapien et lorem. Curabitur dapibus faucibus nunc.">
 </asp:Label>

 <asp:Image ID="Image1" runat="server"
 ImageUrl="Dan at Vernal Pool.jpg" />
 </asp:Panel>
 <cc1:CollapsiblePanelExtender ID="cpeProductInfo" runat="server"
 CollapseControlID="pnlProductInfoHeader"
 Collapsed="true"
 CollapsedImage="expand.jpg"
 CollapsedText="Product Information (Show Details...)"
 ExpandControlID="pnlProductInfoHeader"
 ExpandedImage="collapse.jpg"
 ExpandedText="Product Information (Hide Details...)"
 ImageControlID="imgProductInfo_ToggleImage"
 SuppressPostBack="true"
 TargetControlID="pnlProductInfo">
 </cc1:CollapsiblePanelExtender>

 </form>
</body>
</html>

Example 3-5. OrderForm.aspx.vb

Partial Class _Default
 Inherits System.Web.UI.Page

 Protected Sub YesNoEventHandler(ByVal sender As Object, _
 ByVal e As System.EventArgs) _
 Handles rbNo.CheckedChanged, rbYes.CheckedChanged

 pnlPersonalInfo.Visible = rbYes.Checked
 End Sub

 Protected Sub rblAge_SelectedIndexChanged(ByVal sender As Object, _
 ByVal e As System.EventArgs)
 PopupControlExtender1.Commit(rblAge.SelectedValue.ToString())
 End Sub
End Class

Example 3-4. OrderForm.aspx (continued)

92 | Chapter 3: Snappier Web Sites with AJAX

Summary
• AJAX is a technique for processing code on the server, and on the user’s

browser, which dramatically increases performance, both actual and perceived.

• The ASP.NET AJAX control library contain a number of controls that can be
used just as easily as standard ASP.NET controls, meaning you don’t need to
know the JavaScript behind how the controls work.

• The ScriptManager control is the key control that makes ASP.NET AJAX possi-
ble by managing the JavaScript for you. The control is placed on every AJAX-
enabled page by default, and its EnablePartialRendering property is set to True,
so you don’t need to do anything yourself.

• Placing controls inside an UpdatePanel control enables you to update those con-
trols without posting back to the server.

• The AJAX Control Toolkit, which is a separate download, has a number of con-
trols called extenders that enhance existing controls, rather than being separate
controls themselves. Extender controls have a TargetControlID property that you
use to set the existing control that the extender is extending.

• The TextBoxWaterMarkExtender adds a watermark effect to an existing textbox,
providing a prompt for the reader to enter data.

• TextBoxWaterMarkExtender can apply a separate style to a text box, if you have a
style sheet defined for the project, or it can just add the text you specify.

• The PopupControlExtender can help you make efficient use of the space on your
page, by hiding some content until the user clicks on a control.

• You can apply the CollapsiblePanelExtender to a regular Panel control, causing
it to hide most of its content until the user clicks on it. The Panel then expands,
displaying its content, until the user collapses it.

Now you have a good handle on the basic controls, and you’ve also seen how to use
some of the AJAX extenders to apply some really clever effects to them. The Adven-
tureWorks order form you’ve been progressively building is looking pretty sophisti-
cated by now. As we’ve mentioned, though, it doesn’t connect to anything behind
the scenes, so users can’t see the AdventureWorks products, and can’t yet place their
orders. To do that, you need to learn how to interact with a database. ASP.NET pro-
vides a number of controls for retrieving data from a database and displaying it in a
number of different ways. With AJAX, they get even better. You’ll learn all about
them in the next chapter.

Exercises | 93

B R A I N B U I L D E R

Quiz
1. What do you need to do to use a ScriptManager control?

2. Which property of the ScriptManager control enables asynchronous postback?

3. What control do you need to place on your page to enable asynchronous
updates?

4. Can you make a page that contains only an extender control?

5. What property is common to all the AJAX extender controls?

6. What view do you use to set the WatermarkText property?

7. Can you use the TextBoxWatermarkExtender without style sheets?

8. What’s the advantage of using the PopupControlExtender?

9. What method of the PopupControlExtender do you need to call to display the
results?

10. What standard control does the CollapsiblePanelExtender work with?

Exercises
Exercise 3-1. We’ll start things off simply. Suppose you have a store that ships only
to certain states in the Northeastern United States. In your order form, you want to
restrict users to only those states as their shipping destination, so you want to use a
drop-down list. You also want to save space on your form, though, so you want to
hide that delivery list in a Panel with a PopupControlExtender. For this exercise, you’ll
only produce the part of the form where users would enter the shipping State. The
finished form should look like Figure 3-16.

The drop-down list should contain just the six states shown in Figure 3-16. When
the user chooses one of the states, the state’s two-letter postal abbreviation should
appear in the text box.

Exercise 3-2. Most of the AJAX control extenders that we’ve shown you in this chap-
ter just do one thing, although they do it very well. There are, however, many more
extenders that we haven’t shown you, and more are being added all the time. Each
one is different, and covering them all in detail would require more space than we
have—or would be out of date almost immediately. The best way to learn about the
AJAX control extenders is to go to the ASP.NET AJAX Control Toolkit page at http://
ajax.asp.net/ajaxtoolkit/. There you’ll find the latest extenders with examples of how
to use them. Many of the extenders are fairly simple, and have properties you can set
easily. In this exercise, you’ll need to use that documentation as you try out a new
extender.

http://ajax.asp.net/ajaxtoolkit/
http://ajax.asp.net/ajaxtoolkit/

94 | Chapter 3: Snappier Web Sites with AJAX

For this exercise, you’ll use the RoundedCorners extender. Create a new page that
includes a Panel with the dimensions 150 pixels by 100 pixels, colored light gray.
The Panel should contain a Label, 50 pixels wide, colored dark gray, with text that’s
white and bold (feel free to use livelier colors; we’re choosing ones here that will
show up in the book). The Panel should have only its top corners rounded to a
radius of 8. The Label should have all its corners rounded to a radius of 2. You’ll
need the documentation to tell you how to do all that. The result should look like
Figure 3-17.

Exercise 3-3. The SliderExtender is another interesting extender, but slightly more
complicated than it looks. Create a new page that uses the slider extender to simu-
late a volume control. The slider should be set horizontally, and should have a range
from 0 to 10. The results should look like Figure 3-18. (Hint: The documentation is
somewhat unclear. You’ll need two textboxes—the slider prevents one from display-
ing, so you need to use a second textbox, called a bound control, to see the value the
slider is set to.)

Figure 3-16. Your goal for Exercise 3-1.

Exercises | 95

Figure 3-17. Your goal for Exercise 3-2.

Figure 3-18. Your goal for Exercise 3-3.

96

Chapter 4CHAPTER 4

Saving and Retrieving Data 4

So far, you’ve seen how to make good-looking web pages with clever and useful con-
trols. You know how to change the appearance of the page in response to user selec-
tions, and how to use AJAX to enhance the performance of your application. But the
applications you’ve made so far have been limited in what they can actually do. In
this chapter we add the most frequently sought after functionality: the ability to
retrieve, change and store data.

Think about the web sites you visit most often, and you’ll find that almost all of them
have one thing in common—they interact with persistent data. Persistent data is data
that survives a single session; data that you expect will be there the next time you
visit. In fact, it may even be data that can have significant financial consequences.

Shopping sites have databases to track their inventories and customer transactions.
News sites keep databases with articles and photos in them, perhaps referenced by
topic and date. Search engines use unimaginably large (and wicked-fast) databases.

Nearly every real-world commercial web application must be able to perform the
four essential “CRUD” interactions with a database: Create, Read, Update, and
Delete.

Fortunately, ASP.NET provides controls that make it easy and fast to perform these
essential activities. We will demonstrate these interactions with SQL Server Express
(or its big brother, SQL Server) but they work equally well—or nearly so—with
Microsoft Access and most commercial databases. In theory, you can interact with
virtually any collection of data or with XML files, but that is an advanced topic we
won’t go into here.

Along the way we’ll show you enough about database interactions that even if you’ve
never used a relational database, such as SQL Express, you’ll have little trouble
working with one through your web application.

Getting Data from a Database | 97

Getting Data from a Database
To see how to interact with a database, you’ll begin by creating a web application
that can be used to display information about the AdventureWorks database. You’ll
start out by simply retrieving and displaying a subset of data. These exercises will
teach you how to connect your controls to a database to retrieve, filter, and sort the
data and then use the myriad options for presenting it attractively.

As you may remember, AdventureWorks is a free database from Microsoft that rep-
resents a fictional company that sells outdoor and extreme sports gear. The database
tracks products, inventory, customers, transactions, and suppliers.

See Chapter 1 for instructions on installing this sample database if you
have not already done so.

ASP.NET includes a number of controls specifically designed for displaying data.
We’ll focus on the GridView control, but other data controls include the DataList,
Repeater, DetailsView, and FormView.

The GridView control displays columns and rows of data and allows sorting and pag-
ing. It is by far the most popular data display control and is ideal for understanding
how data display controls interact with data-retrieval controls and code. The GridView
control allows the user to click on a column header to sort the data. GridViews also let
you present just a small subset of the data at one time, called a page, with links for easy
access to other pages—this process is called “paging” through data. You can do these,
and for numerous other data manipulations, with very little programming. A GridView
with data from the AdventureWorks database is shown in Figure 4-1.

Binding Data Controls
Database information is stored in memory as tables (just as it is retrieved from a rela-
tional database). Tables consist of rows and columns that match nicely to the
GridView control.

You could write code to pick out each piece of data you want and write it into the
appropriate row or column of the data control, but that’s time-consuming and error-
prone. It is more efficient and safer to bind the control directly to the underlying data.

In the early days of Graphical User Interface (GUI) programming,
binding was a bit of a “trick”—great for simple programs, but useless
for commercial applications because the minute you wanted to do
anything out of the ordinary, the binding would become a strait-
jacket. Microsoft has solved that with ASP.NET by exposing events on
the Data Control that allow you to insert custom code at every stage of
the retrieval and binding of the data to the control.

98 | Chapter 4: Saving and Retrieving Data

Binding is most often used with the larger data controls such as GridView, but you
can also bind many other controls, such as DropDownList, ListBox, CheckBoxList, and
RadioButtonList. All of these controls have a DataSource property that identifies the
source to which the control is bound. For example, you might keep a list of all your
customers’ names in a database. Binding that data to a ListBox can be a convenient
way to allow a customer service representative to quickly pick a customer rather than
typing in a name that might otherwise be difficult to spell.

To see how all this works, you’ll build the GridView from Figure 4-1. Once you have
it up and running, you’ll add some features to it, including the ability to use the grid
to update the database with new data!

Figure 4-1. This GridView control displays data from the AdventureWorks database in a table
format that makes it easier to read, and allows users to click the column headings to sort the data.

Click on column headers
to sort the grid

Links to grid pages

Getting Data from a Database | 99

Create a Sample Web Page
To begin, create a new ASP.NET AJAX-enabled web site named AWProductData.

The IDE automatically places the all-important ScriptManager control onto your
page. Open your toolbox and click the Data tab. You’ll find two types of objects: dis-
play controls, which are designed to present data, and DataSource controls, which are
designed to help you manage interacting with data sources, as shown in Figure 4-2.

Using a DataSource Control
By default, the Data controls are arranged so the display controls are on top, and the
DataSource controls are below (You can drag them into any order you like or arrange
them alphabetically by right-clicking on any control and selecting Sort Items Alpha-
betically.) There is a DataSource control for use with Microsoft SQL Server or SQL
Server Express, one for Microsoft Access, one for any type of Object, one for use
with SiteMaps (for binding to menu controls—more on this in Chapter 6), and one
for XML documents as a data source.

Since the AdventureWorks database is a SQL Server database, you’ll use the
SqlDataSource control whether you are using SQL Server or SQL Server Express. This
control will allow you to access the AdventureWorks database, but first you need to
direct the control where to find it.

Switch to Design view and drag the SqlDataSource control from the Toolbox directly
onto the design surface. A Smart Tag will open, as seen in Figure 4-3.

Figure 4-2. The Data tab in the Toolbox contains the controls that you’ll need to display data, and
to interact with data sources.

Display controls

DataSource controls

100 | Chapter 4: Saving and Retrieving Data

When you click on Configure Data Source, you invoke a wizard that will walk you
through the steps of configuring your data source—hooking up the control to the
underlying data table(s).

The first step is to create (or choose) a data connection as seen in Figure 4-4.

Previous data connections in this web site will be listed in the drop-down menu. To
make a new connection, click the New Connection… button to get the Add Connec-
tion dialog shown in Figure 4-5.

Figure 4-3. A Smart Tag opens when you drag the SqlDataSource control onto your page allowing
you to configure the data source.

Figure 4-4. To configure your DataSource control, you need to provide it with a data connection.
You can choose a preexisting connection from the list (if you have previously created any for this
web site), or create a new data connection by clicking the New Connection button.

Getting Data from a Database | 101

Following the steps in Figure 4-5, prepare your connection to the database:

1. Select your server from the Server Name drop-down menu. If it is not there, type
the name of the server. Typically, if you are using SQLExpress, the name will be
“.\SqlExpress” (dot-slash then SqlExpress) and if you are using SQL Server it will
be the name of your computer, or it will be (local)—including the parentheses.

2. Leave the radio button set to “Use Windows Authentication.”

If Windows Authentication does not work, you may need to use SQL
Server authentication. If so, your database administrator will tell you
what credentials to enter. They may or may not be the same as your
Windows login credentials.

Figure 4-5. The Add Connection dialog is where you specify a new connection for your data source.
Select the server, the logon credentials, and finally the database you want to use.

1

2

3
4

5

102 | Chapter 4: Saving and Retrieving Data

3. Select the option, “Select or enter a database name:”.

4. Choose the AdventureWorks database in the database name drop-down.

5. Click the Test Connection button to verify that it all works.

This dialog box constructs a connection string, which provides the information neces-
sary to connect to a database on a server.

Click OK to complete the string and return to the Configure Data Source Wizard.
Click the plus mark next to “Connection string” to see the connection string you’ve
just created, as shown in Figure 4-6. The segment Integrated Security=True was cre-
ated when you chose Windows Authentication rather than SQL Server Authentication.

In Figure 4-6, the Wizard displays an expanded data connection in the
drop-down menu, consisting of the name of the server (in this case the
local machine, virtdell380, concatenated with sqlexpress, followed
by the name of the database and database owner). You don’t need to
enter this information yourself.

Figure 4-6. Click the plus sign to view the connection string you just created. This is what gives
your control access to the database.

Getting Data from a Database | 103

When you click Next, the Wizard will ask if you’d like to save this Connection string
in the “application configuration file.” In an ASP.NET program, the application con-
figuration file is web.config, and saving the connection string there is an excellent
idea, so be sure to check the checkbox and give the string a name you can easily
remember. The Wizard will make a suggestion for the name of the connection string,
as shown in Figure 4-7.

This will cause the following lines to be written to web.config:

<connectionStrings>
 <add name="AdventureWorksConnectionString"
 connectionString="Data Source=.\SqlExpress;
 Initial Catalog=AdventureWorks;Integrated Security=True"
 providerName="System.Data.SqlClient"/>
</connectionStrings>

The Wizard next prompts you to configure the SELECT statement. The SELECT state-
ment is the SQL code the control uses to retrieve the exact subset of data you are
looking for from the database. Fortunately, if you are not fluent in SQL (most often
pronounced “see-quill”), the Wizard will help you build the statement.

Figure 4-7. It’s a good idea to save the connection string in the application’s web.config file, so you
can use it again with other controls.

104 | Chapter 4: Saving and Retrieving Data

Starting with the radio buttons at the top of the dialog box, select “Specify columns
from a table or view.” (You would select the other button if you had a custom SQL
statement prepared, as you’ll see shortly.)

Selecting the button, displays the table drop-down menu. Here, you are presented
with the various table options that represent the different sets of data in the data-
base. For this exercise, choose the Product table. The various columns from the
Product table will be displayed, as shown in Figure 4-8. Simply check the columns
you want retrieved, and they’ll be added to the SELECT statement. The choices you
make will be displayed in the text box at the bottom of the dialog. For this exercise,
select the ProductID, Name, ProductNumber, MakeFlag, SafetyStockLevel, and
ReorderPoint columns. You could narrow the set of data with the WHERE button,
or specify the order in which to retrieve the data with the ORDER BY button. For the
moment, you can ignore them both.

Figure 4-8. To configure the SELECT statement, specify the table and columns within it you want
to retrieve, and the Wizard builds the proper SQL statement for you…more or less.

Getting Data from a Database | 105

“Pay No Attention to That Man Behind the Curtain”
When you’ve completed the table setup, click Next, to move to the last page of the
Wizard, and then click the Test Query button. The test fails, as shown in Figure 4-9.

In this instance, the Wizard falls on its face. It turns out that the AdventureWorks
database prefixes a schema name in front of each table name and the Wizard is
unprepared for that. It generates a SELECT statement without schema names, as you
saw back in Figure 4-8.

Schema in this context refers to an optional name used for organizing the tables in a
large database. For example, in the AdventureWorks database, all the tables relating
to the HR department have the schema name HumanResources prefixed to every
table name, separated by a period, such as HumanResources.EmployeeAddress. Other
schemas in the AdventureWorks database include Person, Production, Purchasing,
and Sales.

As mentioned, a schema name is optional in SQL. In fact, in our experience, they are
rarely used, and the Wizard is unaware of them. However, since the Adventure-
Works database (which ships as part of Microsoft SQL Server) does use them, the
Wizard becomes confused and flies off to Kansas leaving you on your own.

Figure 4-9. The Wizard let you down; the Query Test failed and you’re looking at this error
message because this database requires a schema name in front of the table names.

106 | Chapter 4: Saving and Retrieving Data

The square brackets surrounding each field and table name in the gen-
erated SELECT statement are not required, but are used to guarantee
that there will be no problems if the name includes any space charac-
ters (usually a very bad idea in any case). We often remove them from
the finished statement to enhance readability.

Think of this as proof that people are not yet entirely replaceable by automation. Hit
the Previous button to go back one step and fix the SELECT statement manually. Click
the radio button captioned “Specify a custom SQL statement or stored procedure,”
and then click Next. In the SQL Statement box, shown in Figure 4-10, type in:

SELECT ProductID, Name, ProductNumber, MakeFlag, SafetyStockLevel, ReorderPoint
FROM Production.Product

As you can see, this is nearly the same SELECT statement that you built with the Wiz-
ard in Figure 4-8, except the Product table now has the required schema (Produc-
tion) in front of it. We’ve also left out the square brackets on the columns, as
mentioned in the note above.

Figure 4-10. The SQL statement editing dialog, after adding the schema name to the table name,
and removing all the extraneous square brackets.

Getting Data from a Database | 107

Click Next to proceed to the next page of the Wizard, and then click Test Query.
This time, you should get the results shown in Figure 4-11.

Behold—the triumph of 3 billion years of random mutation and natural selection
over 50 years of automation!

Click Finish to save your work. It may not look like much, but you’ve just enabled
your application to access the AdventureWorks database, meaning all that data is
now at your control.

Using the GridView Control
Now that the DataSource control is providing the data you want, you need a way to
display it. From the Data section of the Toolbox, drag a GridView control onto the
page. The GridView control recognizes that a SqlDataSource is on the page and does
not create its own.

Figure 4-11. When you test the SELECT statement this time, you’ll see the results you were looking
for.

108 | Chapter 4: Saving and Retrieving Data

If you had dragged the GridView onto the page first, it would have
given you the opportunity to create a SqlDataSource rather than
assuming you’d like to use one already in existence. It pretty much
amounts to the same thing.

Click on the GridView’s Smart Tag (if it is not already open). Click the drop-down menu
next to “Choose Data Source” and select the DataSource control you just created, as
shown in Figure 4-12.

Once the data source is set, the data grid is redrawn, with a column for each field
returned by the data source. The column headers are filled in for you based on the
column names in the table that the data source represents.

You’ll have an opportunity to make the grid look much prettier, in just
a short while.

Open the Smart Tag again and check “Enable Paging,” which allows the grid to show
a limited number of entries on each page and provide links to the other pages provid-
ing access to all the data. Also check “Enable Sorting,” which allows the user to sort
the grid by clicking on a column header.

Set the page to be the start page for the application (right-click the page in the Solu-
tion Explorer and select “Set As Start Page”) and then run the application.
Figure 4-13 demonstrates how the screen should appear.

Notice that the MakeFlag column (which is a Boolean value of some obscure use to
the AdventureWorks business model) is shown as a checkbox. Also note that each of
the column headers are shown as links. Click on one of them now—you see that the
grid is sorted by that column. Also notice that at the bottom of the grid are links to
page through more data, 10 rows at a time. Click on some of those too, to see the
various pages.

Figure 4-12. The Smart Tag of the GridView control lets you select the data source you want to
use.

Getting Data from a Database | 109

Each time you click on one of the columns or one of the page numbers the entire
page is posted back to the server, and you’ll encounter a noticeable delay and flicker.
You know how to fix that!

Close the browser and return to Design view. Drag an UpdatePanel control onto the
page from the AJAX Extensions section of the Toolbox. Drag both the SqlDataSource
and GridView controls already on the page into the UpdatePanel.

Run the application again. Notice there are no visible postbacks when you page or
sort, and consequently, no flicker.

Auto-Generated Code
Switch to Source view and look at the markup code that was generated for the
GridView. It should appear as highlighted in Example 4-1.

Figure 4-13. With the GridView in place and connected to the data source, you can see the data
you asked for. Notice the clickable headings and the paging links.

Example 4-1. GridView auto-generated control source code

<%@ Page Language="VB" AutoEventWireup="true" CodeFile="Default.aspx.vb"
Inherits="_Default" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">

110 | Chapter 4: Saving and Retrieving Data

The IDE has done a lot of work for you. It has examined the data source and created
a BoundField for each column in the data. Further, it has set the HeaderText to the
name of the column in the database, represented by the DataField attribute. It has set

<head runat="server">
 <title>Untitled Page</title>
</head>
<body>
 <form id="form1" runat="server">
 <asp:ScriptManager ID="ScriptManager1" runat="server" />
 <div>
 </div>
 <asp:UpdatePanel ID="UpdatePanel1" runat="server">
 <ContentTemplate>
 <asp:SqlDataSource ID="SqlDataSource1" runat="server"
 ConnectionString=
 "<%$ ConnectionStrings:AdventureWorksConnectionString %>"
 SelectCommand="SELECT [ProductID], [Name],
 [ProductNumber],
 [MakeFlag], [SafetyStockLevel], [ReorderPoint]
 FROM [Production].[Product]" >
 </asp:SqlDataSource>
 <asp:GridView ID="GridView1" runat="server"
 AllowPaging="True" AllowSorting="True"
 AutoGenerateColumns="False"
 DataKeyNames="ProductID" DataSourceID="SqlDataSource1">
 <Columns>
 <asp:BoundField DataField="ProductID"
 HeaderText="ProductID" InsertVisible="False"
 ReadOnly="True"
 SortExpression="ProductID" />
 <asp:BoundField DataField="Name" HeaderText="Name"
 SortExpression="Name" />
 <asp:BoundField DataField="ProductNumber"
 HeaderText="ProductNumber"
 SortExpression="ProductNumber" />
 <asp:CheckBoxField DataField="MakeFlag"
 HeaderText="MakeFlag"
 SortExpression="MakeFlag" />
 <asp:BoundField DataField="SafetyStockLevel"
 HeaderText="SafetyStockLevel"
 SortExpression="SafetyStockLevel" />
 <asp:BoundField DataField="ReorderPoint"
 HeaderText="ReorderPoint"
 SortExpression="ReorderPoint" />
 </Columns>
 </asp:GridView>
 </ContentTemplate>
 </asp:UpdatePanel>
 </form>
</body>
</html>

Example 4-1. GridView auto-generated control source code (continued)

Getting Data from a Database | 111

the AllowPaging and AllowSorting properties to true. In addition, it has also set the
SortExpression to the name of the field. Finally, you’ll notice on the declaration of
the GridView that it has set AutoGenerateColumns to False.

If you were creating the GridView by hand, and if you want to let the grid create all
the columns directly from the retrieved data, you could simplify the code by setting
AutoGenerateColumns to True. (If AutoGenerateColumns is set to True, and you also
include explicitly bound columns, then you will display duplicate data.) To see this
at work, create a second GridView by dragging another GridView control from the
Toolbox inside the UpdatePanel, below the first.

In the Smart Tag, set the Data Source to the same source as that of the first,
SqlDataSource1. Click on the “Enable Paging” and “Enable Sorting” checkboxes.

Now go to Source view. If necessary, delete the <columns> collection from the new
grid, GridView2. Change AutoGenerateColumns to the default value: True. The declara-
tion for this second GridView should look something like the following:

<asp:GridView ID="GridView2" runat="server"
 AllowPaging="True" AllowSorting="True"
 DataSourceID="SqlDataSource1" >
</asp:GridView>

Run the page. Both grids behave identically and are visually indistinguishable. So
why does the IDE create the more complex version? By turning off
AutoGenerateColumns, the IDE gives you much greater control over the presentation
of your data. For example, you can set the headings on the columns (such as chang-
ing ProductNumber to Product No.). You can change the order of the columns or
remove columns you don’t need, and you can add new columns with controls for
manipulating the rows.

You can make these changes by manually coding the HTML in the Source view, or
by switching to Design View and clicking the Smart Tag for the GridView and choos-
ing Edit Columns. Do that now for GridView1 and you’ll see the Fields dialog box,
as shown in Figure 4-14.

This dialog box is divided into three main areas: the list of available fields, the list of
selected fields (with buttons to remove fields or reorder the list), and the BoundField
properties window on the right. When you click on a selected field (such as
ProductID), you can set the way that field will be displayed in the data grid (such as
changing the header to ID).

While you’re examining what you can do with the GridView, let’s make it look a lit-
tle nicer. First, delete or comment out the second (simpler) grid (GridView2) you just
created a few moments ago. Second, open the Smart Tag on the original grid. Click
AutoFormat and choose one of the formatting options. Of course, you can format it
by hand, but why work so hard for a simple example? We’ll choose “Brown Sugar”
because it shows up well in the printed book. Run the application. The output
should appear as in Figure 4-15.

112 | Chapter 4: Saving and Retrieving Data

Adding Insert, Update, and Delete Statements
At this point, the SqlDataSource you’ve created has only a SELECT statement to extract
data from the database:

SelectCommand="SELECT ProductID, Name, ProductNumber,
 MakeFlag, SafetyStockLevel, ReorderPoint
 FROM Production.Product" >

That’s fine, if all you want to do is display the data in the database. For a functional
site, though, you probably want to be able to add new data, edit existing data, and
even delete data. You can do all that just as easily as you did the SELECT statement, by
asking your data source control to generate the remaining Create, Retrieve, Update,
and Delete statements (fondly known as CRUD statements), using a wizard to make
your work easier. To see this in action, switch to Design view, click on the
SqlDataSource’s Smart Tag, and choose Configure Data Source. The Configure Data
Source Wizard opens, displaying your current connection string. Click Next and the
Configure Select Statement dialog box is displayed, as shown earlier in Figure 4-8.

Figure 4-14. The field editor dialog lets you change the properties of your data columns, without
having to do it in Source view.

Getting Data from a Database | 113

Recall the previous the Configure Data Source Wizard—it did not correctly identify
the table in the autogenerated SELECT statement, omitting the schema name. You
worked around that by specifying your own SQL statement. Since the SELECT state-
ment you needed was relatively simple to type in, that was not a problem.

However, there is a lot of typing involved for all the CRUD statements. So for the rest
of these statements, you will use the Wizard to generate the SQL code, and then just
fix the table names.

Make sure the “Specify columns from a table or view” radio button is selected, and
the Product table is selected. Check the columns you want returned by the SELECT
statement (ProductID, Name, ProductNumber, MakeFlag, SafetyStockLevel, ReorderPoint).
This will create a new SELECT statement.

Figure 4-15. The AutoFormat option in the GridView’s Smart Tag lets you choose the formatting
option that best fits your site, and applies it automatically.

Click on column headers
to sort the grid

Links to grid pages

114 | Chapter 4: Saving and Retrieving Data

Click the Advanced button to open the Advanced SQL Generation Options dialog
box. Select the “Generate INSERT, UPDATE, and DELETE statements” checkbox,
as shown in Figure 4-16.

Clicking this checkbox instructs the Wizard to create the remaining CRUD state-
ments, and also enables the second checkbox, Use optimistic concurrency. This is a
feature that safeguards your data in case another user makes a change to the data-
base at the same time you do. Select this option as well, and Click OK. When you
return to the Wizard, click Next then Finish. You may be asked to update your grid,
which unfortunately will wipe out all your customization, but the good news is that
you are now bound to a data source control that provides all four CRUD methods.

This Wizard breaks down if any of the fields in the grid can have null
values. When a database table is created, you must specify if a column
must have data or if null values (no data) are allowed. If you include
fields in the GridView which are allowed to be null, then you must
handcode the SqlDataSource declaration in Source view.

Open the Smart Tag on the GridView control again, and reapply the look and feel you
want. Also—and this is important—select the checkboxes “Enable Editing” and
“Enable Deleting.”

Switch to Source view. The SqlDataSource markup will appear similar to
Example 4-2, except the new SQL commands have been added. You still need to
modify the table names, or else you’ll get the error you saw earlier (see Figure 4-9).
Add the schema name [Production] to each of the four statements highlighted in
Example 4-2.

Figure 4-16. You’ll use the Advanced SQL Options dialog box to automatically create the SQL
statements to add, edit, and delete data from your data source.

Getting Data from a Database | 115

The following code does not include concurrency detection.

Switch back to Design view and notice the Edit and Delete buttons on each row.
They are the result of checking the Enable Editing and Enable Deleting checkboxes.

Taking apart the code in Example 4-2, on the first line is the declaration for the
SqlDataSource (and its corresponding closing tag at the bottom). After the ID, the
obligatory runat="server", and the ConnectionString attribute, you see four attributes:
the SelectCommand (which was there previously) and the new DeleteCommand,
InsertCommand, and UpdateCommand.

Example 4-2. SqlDataSource with CRUD statements

<asp:SqlDataSource ID="SqlDataSource1" runat="server"
 ConnectionString="<%$ ConnectionStrings:AdventureWorksConnectionString %>"
 SelectCommand=" SELECT [ProductID], [Name], [ProductNumber],
 [MakeFlag], [SafetyStockLevel], [ReorderPoint]
 FROM [Production].[Product]"
 DeleteCommand="DELETE FROM [Production].[Product]
 WHERE [ProductID] = @ProductID"
 InsertCommand="INSERT INTO [Production].[Product] ([Name],
 [ProductNumber],
 [MakeFlag], [SafetyStockLevel], [ReorderPoint])
 VALUES (@Name, @ProductNumber, @MakeFlag,
 @SafetyStockLevel,
 @ReorderPoint)"
 UpdateCommand="UPDATE [Production].[Product] SET [Name] = @Name,
 [ProductNumber] = @ProductNumber,
 [MakeFlag] = @MakeFlag,
 [SafetyStockLevel] = @SafetyStockLevel,
 [ReorderPoint] = @ReorderPoint
 WHERE [ProductID] = @ProductID" >
 <DeleteParameters>
 <asp:Parameter Name="ProductID" Type="Int32" />
 </DeleteParameters>
 <UpdateParameters>
 <asp:Parameter Name="Name" Type="String" />
 <asp:Parameter Name="ProductNumber" Type="String" />
 <asp:Parameter Name="MakeFlag" Type="Boolean" />
 <asp:Parameter Name="SafetyStockLevel" Type="Int16" />
 <asp:Parameter Name="ReorderPoint" Type="Int16" />
 <asp:Parameter Name="ProductID" Type="Int32" />
 </UpdateParameters>
 <InsertParameters>
 <asp:Parameter Name="Name" Type="String" />
 <asp:Parameter Name="ProductNumber" Type="String" />
 <asp:Parameter Name="MakeFlag" Type="Boolean" />
 <asp:Parameter Name="SafetyStockLevel" Type="Int16" />
 <asp:Parameter Name="ReorderPoint" Type="Int16" />
 </InsertParameters>
</asp:SqlDataSource>

116 | Chapter 4: Saving and Retrieving Data

The DeleteCommand takes a single parameter (@ProductID), which is specified in the
DeleteParameters element:

<DeleteParameters>
 <asp:Parameter Name="ProductID" Type="Int32" />
</DeleteParameters>

The UpdateCommand control requires more parameters, one for each column you’ll be
updating, as well as a parameter for ProductID (to make sure the correct record is
updated). Similarly, the InsertCommand takes parameters for each column for the new
record. All of these parameters are within the definition of the SqlDataSource.

Displaying and Updating the Data
Now that your SqlDataSource object is ready to go, you only have to set up your
GridView control. In Design view, click on the GridView Smart Tag and choose “Edit
Columns.” Verify that the checkboxes to enable editing and deleting are selected, as
shown in Figure 4-17.

If you prefer to have buttons for Edit and Delete, rather than links, click on the
Smart Tag and select “Edit Columns....” When the Fields dialog box opens, click the
Command Field entry in the Selected Fields area (lower-left corner). This brings up
the Command Field Properties in the right-hand window. In the Appearance section
of the Fields editor, choose ButtonType and then change Link to Button in the drop-
down menu next to ButtonType, as shown in Figure 4-18.

The result is that the commands (Edit and Delete) are shown as buttons, as shown in
Figure 4-19.

— S Q L C H E AT S H E E T —
Parameters

A parameter to a SQL statement allows for parts of the statement to be replaced when
it is actually run. SQL parameters are always preceded with the @ symbol. So, in the
following SQL statement:

delete from Products where ReorderPoint > @ReorderPoint

all the records with a value of ReorderPoint greater than some specified value will be
deleted from the Products table. One time the statement is run, that value may be 100,
the next time it may be 5.

Displaying and Updating the Data | 117

Figure 4-17. Select the Smart Tag on the GridView, and check the boxes to enable editing and
deleting.

Figure 4-18. Click the Smart Tag of the GridView, then click Edit Columns to get this Fields dialog
box where you can select and edit the columns in the GridView. Here, the CommandField button
type is being changed.

118 | Chapter 4: Saving and Retrieving Data

Take It for a Spin
Start the application. The product database information is loaded into your GridView.
When you click the Edit button, the data grid automatically enters edit mode. You’ll
notice that the editable text fields change to text boxes and checkboxes, as appropri-
ate, and the command buttons change from Edit and Delete to Update and Cancel.
Make a small change to one field, as shown in Figure 4-20.

When you click the Update button for that row, the grid and the database are both
updated, which you can confirm by opening the table in the database, as shown in
Figure 4-21.

To open the database table, stop the application first. Then on the right side of the
IDE, click the Database Explorer tab (in VWD; it is called Server Explorer in
VS2005). Expand the AdventureWorks folder, and then expand the Tables folder.
Scroll down until you find the Product (Production) table (in the IDE, the schema
name is displayed in parenthesis after the table name—go figure), then right-click it,
and select “Show Table Data.” This will show you the contents of the table from
within the IDE.

Figure 4-19. You can change the Edit and Delete links in the GridView to buttons, if you prefer.

Displaying and Updating the Data | 119

Modifying the Grid Based on Events
Suppose you would like you to modify the grid so the contents of the Name column
are red when the MakeFlag column is checked, that is, when its value is True. In
addition, you want all the ProductNumbers that begin with the letters CA to display
in green. You can do this by handling the RowDataBound event. As the GridView is pop-
ulated with data, each row of data is bound to the GridView individually, and the
RowDataBound event is fired once for each row.

To modify the GridView, switch to Design view, click the GridView, click the light-
ning bolt in the Properties window, and double-click in the method name column
(currently blank) to the right of the RowDataBound event. The IDE will create an event
handler named GridView1_RowDataBound() and then place you in the code-behind file
within the skeleton of that method, ready for you to start typing code.

The second argument to this method is of type GridViewRowEventArgs. This object
has useful information about the row that is databound, which is accessible through
the Row property of the event argument.

Figure 4-20. When you click Edit on a row, that row enters edit mode. Any fields that can be edited
change to text boxes and checkboxes.

120 | Chapter 4: Saving and Retrieving Data

Enter the code shown in Example 4-3.

The first If statement (highlighted in Example 4-3) tests if the type of Row passed in
as a parameter—in other words, the row that was bound and triggered this event—is
a DataRow (rather than a header, footer, or something else).

Figure 4-21. If you view the table in the database after editing it in the GridView, you’ll see that the
changes have been saved.

Example 4-3. Handling theRowDataBound event

Protected Sub GridView1_RowDataBound(ByVal sender As Object, _
 ByVal e As System.Web.UI.WebControls.GridViewRowEventArgs)
 If e.Row.RowType = DataControlRowType.DataRow Then
 Dim cellProductNumber As TableCell = e.Row.Cells(3) ' ProductNumber column
 If cellProductNumber.Text.Substring(0, 2) = "CA" Then
 cellProductNumber.ForeColor = Drawing.Color.Green
 End If

 Dim cellMakeFlag As TableCell = e.Row.Cells(4) ' MakeFlag column
 Dim cb As CheckBox = CType(cellMakeFlag.Controls(0), CheckBox)
 If cb.Checked Then
 e.Row.Cells(2).ForeColor = Drawing.Color.Red
 End If
 End If
End Sub

Displaying and Updating the Data | 121

— V B C H E AT S H E E T —
If-Then Statements

When you’re working with data, you usually don’t know what the data will be when
you’re writing your code. You might want to take different actions depending on the
value of a variable. That’s what the If-Then statement is for. You’ve seen how the
Checked value of a checkbox or radio button can affect the behavior of other controls.
With the If-Then statement, you can be even more flexible:

 If chkMyCheckBox.Checked = true Then
 txtMyTextBox.Text = "It's true!"
 End If

The condition you want to evaluate comes after the If, but before the Then. In this case,
you want to determine if the checkbox is checked, so the condition is chkMyCheckBox.
Checked = true.

If it’s true, the statement after the Then is executed, setting txtMyTextBox.Text to “It’s
true!” You can execute any number of statements in the Then section.

If the condition is false, nothing happens.

You must insert the statement End If at the end of the Then block so that your code knows
where the Then block ends and can continue executing as normal from that point.

The Else statement comes into play when you want to take one of two actions. With
just an If-Then statement, if the condition you’re evaluating is false, nothing happens.
However, you might want to take one action if the condition is true, and another if it’s
false, like this:

If chkMyCheckBox.Checked = true Then
 txtMyTextBox.Text = "It's true!"
 Else
 txtMyTextBox.Text = "Not true!"
 End If

This code sends one message to txtMyTextBox if the condition is true, and a different
message if it’s false.

You have lots of different options when you specify conditions, which are based on a
set of “operators” that you’re probably already familiar with. For example, instead of
testing to see if one part of your condition is equal (=) to another, you could use one of
these other operators:

• <> not equal to

• < less than

• > greater than

• <= less than or equal to

• >= greater than or equal to

In short, you can test for any condition that evaluates to true or false—in other words,
a Boolean. In fact, the Checked property of a textbox is a Boolean all by itself, so you
could have used this for the condition:

If chkMyCheckBox.Checked Then

122 | Chapter 4: Saving and Retrieving Data

Once you know you are dealing with a DataRow, you can extract the cell(s) you want
to examine from that row. Here, we will look at two cells: the ProductNumber cell is
the fourth cell in the row, at offset (index) 3, and the MakeFlag cell is the fifth cell in,
at offset 4. (Remember, all indices are zero-based.)

To access the ProductNumber cell, you define a new variable, cellProductNumber, defined
as a TableCell with the As keyword, and set it equal to the cell at offset 3 in the row,
like this:

Dim cellProductNumber As TableCell = e.Row.Cells(3)

Once you have the cell as a variable, you want to get the text contained in the cell to
compare to your known value. You do that by accessing the Text property of
cellProductNumber, and then using the Substring() function.

The Substring() function, as you might guess from its name, extracts a smaller
string from a larger one. This is a pretty simple function to work with. First, you call
the function on a string, and you give it two numbers as parameters: the index of the
start of the substring, and the length of the substring. As with all other indices, the
first character in the string is position zero. You want the first two characters from
the Text string, so the starting index is 0, and the length of the substring is 2. There-
fore, to get the first two characters from your string, you use the function
Substring(0,2). Once you have that substring, you can use a simple If statement to
compare it to the string you want to match, "CA":

If cellProductNumber.Text.Substring(0, 2) = "CA" Then

It there is a match, you want to set the ForeColor property of the cell to green, which
you can do using the Drawing.Color.Green property:

cellProductNumber.ForeColor = Drawing.Color.Green

In the case of the MakeFlag, it is somewhat more complicated. It’s easy enough to
isolate the cell that contains the checkbox—it’s at index 4—and then assign that
value to a new variable called cellMakeFlag:

Dim cellMakeFlag As TableCell = e.Row.Cells(4)

This is the same technique you used to isolate the ProductNumber cell. In this case,
though, the Text property of this cell will always be empty. However, it does contain
a CheckBox control, which is the only control in the cell. Instead of reading the text in
the cell, you want to read the value of the Checked property of that CheckBox control.
Each cell has a collection of all the controls contained in the cell, called Controls,
which has a zero-based index. Since the checkbox you want is the only control in the
collection, you know it’s at cellMakeFlag.Controls(0). Next you define a new vari-
able, cb, which you define as a CheckBox. Then you use the CType function on the con-
trol you just isolated, to convert the control to a CheckBox. This works because we
know it is a CheckBox:

Dim cb As CheckBox = CType(cellMakeFlag.Controls(0), CheckBox)

Displaying and Updating the Data | 123

Then you test the Checked property of the CheckBox:

If cb.Checked Then

If the box is checked, cb.Checked will evaluate to true. If it is checked, you want to set
the ForeColor property of the third cell in the row (offset 2), the ProductName column:

e.Row.Cells(2).ForeColor = Drawing.Color.Red

You set the color of the cell the same way you did for ProductNumber, but notice this
time you’re not changing the color of the checkbox cell itself—you’re changing a dif-
ferent cell in the table.

Run the web site. It will look identical to Figure 4-19, except the product names for
which the MakeFlag field is checked will display in red, and some of the product num-
bers will display in green. (Neither of these changes will be obvious in the printed
book, so we will forego a figure showing the color changes.)

Selecting Data from the GridView
Often you need to select a row from the grid and extract data from that row. This is
easy to do using the SelectedIndexChanged event of the GridView.

To see how this works, drag a Label control from the Standard section of the Tool-
box onto the Design view, below the grid but within the UpdatePanel control.
Change the Text property of this Label to Name. Then drag a TextBox control next to
the Label. Change its ID property to txtName and set its ReadOnly property to True.
You now have a place to display the name of the selected item from the grid.

— V B C H E AT S H E E T —
CType Method

CType converts its first argument into an object of a new type as specified by its second
argument. In the case shown here, it is converting a control to a CheckBox. If the object
you pass is not of the appropriate type, CType generates an error. Read this statement:

Dim cb As CheckBox = CType(cellMakeFlag.Controls(0), CheckBox)

as follows: “Find the first item in the Controls collection in cellMakeFlag and convert
it to type CheckBox.” The result will be an object of type CheckBox or an exception will
be thrown. If no exception is thrown, assign the result to the variable cb, which is of
type CheckBox.

If you want to be extra careful, you can wrap the CType conversion in a try/catch block,
discussed in Chapter 8, but that isn’t really necessary here as you know it is a check-
box.

124 | Chapter 4: Saving and Retrieving Data

Click on the Smart Tag of the GridView and check the “Enable Selection” checkbox.
This will cause a Select button to display in the first column of the grid, next to the
Edit and Delete buttons already there, as shown in Figure 4-22.

Now all you need to do is set up the event handler to respond to the Select buttons.
Double-click on the Select button in the first row of the grid. This will open up the
code-behind file with the skeleton of the SelectedIndexChanged already created for
you, ready to accept your custom code. Enter the highlighted code from the follow-
ing snippet:

Protected Sub GridView1_SelectedIndexChanged(ByVal sender As Object, _
 ByVal e As System.EventArgs)
 If GridView1.SelectedRow.RowType = DataControlRowType.DataRow Then
 Dim cellName As TableCell = GridView1.SelectedRow.Cells(2) ' Name column
 txtName.Text = cellName.Text
 End If
End Sub

This code first tests to determine if the selected row is a DataRow (as opposed to a
HeaderRow or a FooterRow). If it is a DataRow, it creates a variable of type TableCell,
which is assigned to the third cell in the selected row (because of zero-based index-
ing, the third item will have an index value of 2). Then the Text property of the Text-
Box is set equal to the Text property of that cell.

Figure 4-22. Clicking Enable Selection in the Smart Tag causes Select buttons to appear in a
GridView.

Displaying and Updating the Data | 125

Run the app and click on one of the Select buttons. The name from the selected row
appears in the TextBox.

Passing Parameters to the SELECT Query
Sometimes you do not want to display all the records in a table. For example, you
might want to have users select a product from your grid and display the order
details for it in a second grid on the current page. To do this, you’ll need a way to
select a product as well as a way to pass the ID of the selected product to the second
grid. The Select buttons are already in place from the previous example, so all you
need to do now is pass the ID of the selected product to the second grid.

To keep the downloadable source code clear, copy the previous example, AWPro-
ductData to a new web site, AWProductDataOrderDetails.

See Appendix A for details about how to copy a web site.

You need to create a second GridView, which will be used to display the order details.
From the Toolbox, drag the second GridView onto the page below the first, and then
drag the Label and TextBox inside the UpdatePanel. Open the Smart Tag for the
UpdatePanel. As you did earlier in the chapter, create a new data source (name it
AdventureWorksOrderDetails), but use the existing connection string. Choose the
SalesOrderDetail table, select the desired columns (for this example, SalesOrderID,
CarrierTrackingNumber, OrderQty, UnitPrice, UnitPriceDiscount, and LineTotal), and
then click the Where button, as shown in Figure 4-23.

A WHERE clause is a SQL language keyword used to narrow the set of data returned
by the SELECT statement. In other words, you’re saying, “Get me all the records
from this table, where this condition is true.” The condition could be defined any
number of ways—where the amount in inventory is less than 10, where the cus-
tomer name is “Smith,” or where the copyright date is after 1985. It all depends on
the types of information you have stored in your columns.

When you click the WHERE button, the Add WHERE Clause dialog opens, which
you can see in Figure 4-24. First, you pick the column you want to match on, in this
case ProductID. Next, pick the appropriate operator for your condition statement.
Your choices include among others, equal to, less than/greater than, like, and con-
tains. For this exercise, use the default (=).

The third drop-down lets you pick the source for the ProductID—that is, where you
will get the term you want to match on. You can pick from any one of several objects
in the menu or choose None if you’ll be providing a source manually. In this case,
you’ll obtain the source of the ProductID from the first GridView, so choose Control.

126 | Chapter 4: Saving and Retrieving Data

When you choose Control, the Parameter properties panel of the dialog wakes up. You
are asked to provide the ID of the Control containing the target parameter. Select
GridView1. Once you’ve made all your choices, the screen will resemble Figure 4-24.

Click Add. When you do, the upper portion of the dialog returns to its initial (blank)
state and the WHERE clause is added to the WHERE Clause window. You could add addi-
tional WHERE clauses at this point, to further restrict the data, but we won’t for this
example.

Click OK to return to the Configure Select Statement dialog box. While you are at it,
sort the results by the SalesOrderID column by clicking on the Order By button. The
Add ORDER BY Clause dialog with the SalesOrderID column selected is shown in
Figure 4-25. The ORDER BY clause is another SQL keyword, and this one does just
what its name implies—it sorts the results using the selected field for sort order.

Click OK until the Configure Data Source Wizard is finished.

Switch to Source view and again fix the name of the tables in the SQL statements
that were auto-generated. The markup for the second GridView and its associated
SqlDataSource is shown in Example 4-4, with the corrected table names highlighted.

Figure 4-23. Configuring the SalesOrderDetail table SELECT statement is similar to the way you
set up the first DataSource, but this time, you’ll add a WHERE clause.

Displaying and Updating the Data | 127

Figure 4-24. Add a Where clause to your SELECT statement with the Add WHERE Clause dialog.
You select the column, the operator, and the source here.

Figure 4-25. Add an ORDER BY clause to sort the results of your SELECT statement.

128 | Chapter 4: Saving and Retrieving Data

Also highlighted in Example 4-4 are the results of the WHERE and ORDER BY buttons
from the Configure Select Statement Wizard.

The SELECT statement now has a WHERE clause that includes a parameterized value
(@ProductID). In addition, within the definition of the SqlDataSource control is a
definition of the SelectParameters. This includes one parameter of type asp:
ControlParameter, which is a parameter that knows how to get its value from a con-
trol (in our example, GridView1). In addition, a second property, PropertyName, tells it
which property in the GridView to check. A third property, Type, tells it that the type
of the value it is getting is of type Int32, so it can properly pass that parameter to the
SELECT statement.

You may now reformat your grid and edit the columns as you did for the first grid,
and then try out your new page, which should look something like Figure 4-26.

The AdventureWorks database has no order details for any of the
entries with ProductIDs below 707. The first entry with details is on
page 22 of the grid, so be sure to move to page 22 (or later) to see
product details. If you select a product that does not have any order
details, the second grid will not appear.

Source Code Listings
The complete markup for the Default.aspx file in the AWProductData site is shown
in Example 4-5, with the code-behind shown directly after in Example 4-6.

Example 4-4. Order detail grid withSqlDataSource

<asp:GridView ID="GridView2" runat="server"
 DataSourceID="AdventureWorksOrderDetails">
</asp:GridView>
<asp:SqlDataSource ID="AdventureWorksOrderDetails" runat="server"
 ConnectionString="<%$ ConnectionStrings:AdventureWorksConnectionString %>"
 SelectCommand="SELECT [SalesOrderID], [CarrierTrackingNumber],
 [OrderQty], [UnitPrice], [UnitPriceDiscount], [LineTotal]
 FROM [Sales].[SalesOrderDetail]
 WHERE ([ProductID] = @ProductID)
 ORDER BY [SalesOrderID]">
 <SelectParameters>
 <asp:ControlParameter
 ControlID="GridView1"
 Name="ProductID"
 PropertyName="SelectedValue"
 Type="Int32" />
 </SelectParameters>
</asp:SqlDataSource>

Source Code Listings | 129

Figure 4-26. When you selected a product in the first grid, the order details appear below in the
second grid.

Example 4-5. Default.aspx for AWProductData

<%@ Page Language="VB" AutoEventWireup="true" CodeFile="Default.aspx.vb"
 Inherits="_Default" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title>Untitled Page</title>
</head>
<body>
 <form id="form1" runat="server">
 <asp:ScriptManager ID="ScriptManager1" runat="server" />

 <asp:UpdatePanel ID="UpdatePanel1" runat="server">
 <ContentTemplate>
 <asp:SqlDataSource ID="SqlDataSource1" runat="server"
 ConnectionString=
 "<%$ ConnectionStrings:AdventureWorksConnectionString %>"

130 | Chapter 4: Saving and Retrieving Data

 SelectCommand="SELECT [ProductID], [Name], [ProductNumber], [MakeFlag],
 [SafetyStockLevel], [ReorderPoint] FROM [Production].[Product]"
 DeleteCommand="DELETE FROM [Production].[Product]
 WHERE [ProductID] = @original_ProductID AND [Name] = @original_Name
 AND [ProductNumber] = @original_ProductNumber
 AND [MakeFlag] = @original_MakeFlag
 AND [SafetyStockLevel] = @original_SafetyStockLevel
 AND [ReorderPoint] = @original_ReorderPoint"
 InsertCommand="INSERT INTO [Production].[Product] ([Name],
 [ProductNumber], [MakeFlag], [SafetyStockLevel], [ReorderPoint])
 VALUES (@Name, @ProductNumber, @MakeFlag, @SafetyStockLevel,
 @ReorderPoint)"
 UpdateCommand="UPDATE [Production].[Product]
 SET [Name] = @Name, [ProductNumber] = @ProductNumber,
 [MakeFlag] = @MakeFlag,
 [SafetyStockLevel] = @SafetyStockLevel,
 [ReorderPoint] = @ReorderPoint
 WHERE [ProductID] = @original_ProductID
 AND [Name] = @original_Name
 AND [ProductNumber] = @original_ProductNumber
 AND [MakeFlag] = @original_MakeFlag
 AND [SafetyStockLevel] = @original_SafetyStockLevel
 AND [ReorderPoint] = @original_ReorderPoint"
 ConflictDetection="CompareAllValues"
 OldValuesParameterFormatString="original_{0}" >
 <DeleteParameters>
 <asp:Parameter Name="original_ProductID" Type="Int32" />
 <asp:Parameter Name="original_Name" Type="String" />
 <asp:Parameter Name="original_ProductNumber" Type="String" />
 <asp:Parameter Name="original_MakeFlag" Type="Boolean" />
 <asp:Parameter Name="original_SafetyStockLevel" Type="Int16" />
 <asp:Parameter Name="original_ReorderPoint" Type="Int16" />
 </DeleteParameters>
 <UpdateParameters>
 <asp:Parameter Name="Name" Type="String" />
 <asp:Parameter Name="ProductNumber" Type="String" />
 <asp:Parameter Name="MakeFlag" Type="Boolean" />
 <asp:Parameter Name="SafetyStockLevel" Type="Int16" />
 <asp:Parameter Name="ReorderPoint" Type="Int16" />
 <asp:Parameter Name="original_ProductID" Type="Int32" />
 <asp:Parameter Name="original_Name" Type="String" />
 <asp:Parameter Name="original_ProductNumber" Type="String" />
 <asp:Parameter Name="original_MakeFlag" Type="Boolean" />
 <asp:Parameter Name="original_SafetyStockLevel" Type="Int16" />
 <asp:Parameter Name="original_ReorderPoint" Type="Int16" />
 </UpdateParameters>
 <InsertParameters>
 <asp:Parameter Name="Name" Type="String" />
 <asp:Parameter Name="ProductNumber" Type="String" />
 <asp:Parameter Name="MakeFlag" Type="Boolean" />
 <asp:Parameter Name="SafetyStockLevel" Type="Int16" />
 <asp:Parameter Name="ReorderPoint" Type="Int16" />
 </InsertParameters>

Example 4-5. Default.aspx for AWProductData (continued)

Source Code Listings | 131

 </asp:SqlDataSource>
 <asp:GridView ID="GridView1" runat="server"
 AllowPaging="True" AllowSorting="True"
 AutoGenerateColumns="False"
 DataKeyNames="ProductID" DataSourceID="SqlDataSource1"
 BackColor="#DEBA84" BorderColor="#DEBA84" BorderStyle="None"
 BorderWidth="1px" CellPadding="3" CellSpacing="2"
 OnRowDataBound="GridView1_RowDataBound"
 OnSelectedIndexChanged="GridView1_SelectedIndexChanged">
 <Columns>
 <asp:CommandField ButtonType="Button"
 ShowDeleteButton="True" ShowEditButton="True" />
 <asp:BoundField DataField="ProductID" HeaderText="ID"
 InsertVisible="False"
 ReadOnly="True" SortExpression="ProductID" />
 <asp:BoundField DataField="Name" HeaderText="Name"
 SortExpression="Name" />
 <asp:BoundField DataField="ProductNumber"
 HeaderText="ProductNumber"
 SortExpression="ProductNumber" />
 <asp:CheckBoxField DataField="MakeFlag"
 HeaderText="MakeFlag" SortExpression="MakeFlag" />
 <asp:BoundField DataField="SafetyStockLevel"
 HeaderText="SafetyStockLevel"
 SortExpression="SafetyStockLevel" />
 <asp:BoundField DataField="ReorderPoint"
 HeaderText="ReorderPoint"
 SortExpression="ReorderPoint" />
 </Columns>
 <FooterStyle BackColor="#F7DFB5" ForeColor="#8C4510" />
 <RowStyle BackColor="#FFF7E7" ForeColor="#8C4510" />
 <SelectedRowStyle BackColor="#738A9C" Font-Bold="True"
 ForeColor="White" />
 <PagerStyle ForeColor="#8C4510" HorizontalAlign="Center" />
 <HeaderStyle BackColor="#A55129" Font-Bold="True"
 ForeColor="White" />
 </asp:GridView>
 <asp:Label ID="Label1" runat="server" Text="Name"></asp:Label>
 <asp:TextBox ID="txtName" runat="server"></asp:TextBox>
 </ContentTemplate>
 </asp:UpdatePanel>
 </form>
</body>
</html>

Example 4-6. Default.aspx.vb for AWProductData

Partial Class _Default
 Inherits System.Web.UI.Page

 Protected Sub GridView1_RowDataBound(ByVal sender As Object, _
 ByVal e As System.Web.UI.WebControls.GridViewRowEventArgs)

Example 4-5. Default.aspx for AWProductData (continued)

132 | Chapter 4: Saving and Retrieving Data

The complete markup for the Default.aspx file in the AWProductDataOrderDetails
site is shown in Example 4-7, and the code-behind is shown in Example 4-8.

 If e.Row.RowType = DataControlRowType.DataRow Then
 Dim cellProductNumber As TableCell = e.Row.Cells(3) ' ProductNumber
 If cellProductNumber.Text.Substring(0, 2) = "CA" Then
 cellProductNumber.ForeColor = Drawing.Color.Green
 End If

 Dim cellMakeFlag As TableCell = e.Row.Cells(4) ' MakeFlag column
 Dim cb As CheckBox = CType(cellMakeFlag.Controls(0), CheckBox)
 If cb.Checked Then
 e.Row.Cells(2).ForeColor = Drawing.Color.Red
 End If
 End If
 End Sub

 Protected Sub GridView1_SelectedIndexChanged(ByVal sender As Object, _
 ByVal e As System.EventArgs)
 If GridView1.SelectedRow.RowType = DataControlRowType.DataRow Then
 Dim cellName As TableCell = GridView1.SelectedRow.Cells(2) ' Name
 txtName.Text = cellName.Text
 End If
 End Sub
End Class

Example 4-7. Default.aspx for AWProductDataOrderDetails

<%@ Page Language="VB" AutoEventWireup="true" CodeFile="Default.aspx.vb"
 Inherits="_Default" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title>Untitled Page</title>
</head>
<body>
 <form id="form1" runat="server">
 <asp:ScriptManager ID="ScriptManager1" runat="server" />

 <asp:UpdatePanel ID="UpdatePanel1" runat="server">
 <ContentTemplate>
 <asp:SqlDataSource ID="SqlDataSource1" runat="server"
 ConnectionString=
 "<%$ ConnectionStrings:AdventureWorksConnectionString %>"
 SelectCommand="SELECT [ProductID], [Name], [ProductNumber], [MakeFlag],
 [SafetyStockLevel], [ReorderPoint] FROM [Production].[Product]"
 DeleteCommand="DELETE FROM [Production].[Product]
 WHERE [ProductID] = @original_ProductID
 AND [Name] = @original_Name
 AND [ProductNumber] = @original_ProductNumber

Example 4-6. Default.aspx.vb for AWProductData (continued)

Source Code Listings | 133

 AND [MakeFlag] = @original_MakeFlag
 AND [SafetyStockLevel] = @original_SafetyStockLevel
 AND [ReorderPoint] = @original_ReorderPoint"
 InsertCommand="INSERT INTO [Production].[Product] ([Name],
 [ProductNumber], [MakeFlag], [SafetyStockLevel], [ReorderPoint])
 VALUES (@Name, @ProductNumber, @MakeFlag, @SafetyStockLevel,
 @ReorderPoint)"
 UpdateCommand="UPDATE [Production].[Product]
 SET [Name] = @Name, [ProductNumber] = @ProductNumber,
 [MakeFlag] = @MakeFlag,
 [SafetyStockLevel] = @SafetyStockLevel,
 [ReorderPoint] = @ReorderPoint
 WHERE [ProductID] = @original_ProductID
 AND [Name] = @original_Name
 AND [ProductNumber] = @original_ProductNumber
 AND [MakeFlag] = @original_MakeFlag
 AND [SafetyStockLevel] = @original_SafetyStockLevel
 AND [ReorderPoint] = @original_ReorderPoint"
 ConflictDetection="CompareAllValues"
 OldValuesParameterFormatString="original_{0}" >
 <DeleteParameters>
 <asp:Parameter Name="original_ProductID" Type="Int32" />
 <asp:Parameter Name="original_Name" Type="String" />
 <asp:Parameter Name="original_ProductNumber" Type="String" />
 <asp:Parameter Name="original_MakeFlag" Type="Boolean" />
 <asp:Parameter Name="original_SafetyStockLevel" Type="Int16" />
 <asp:Parameter Name="original_ReorderPoint" Type="Int16" />
 </DeleteParameters>
 <UpdateParameters>
 <asp:Parameter Name="Name" Type="String" />
 <asp:Parameter Name="ProductNumber" Type="String" />
 <asp:Parameter Name="MakeFlag" Type="Boolean" />
 <asp:Parameter Name="SafetyStockLevel" Type="Int16" />
 <asp:Parameter Name="ReorderPoint" Type="Int16" />
 <asp:Parameter Name="original_ProductID" Type="Int32" />
 <asp:Parameter Name="original_Name" Type="String" />
 <asp:Parameter Name="original_ProductNumber" Type="String" />
 <asp:Parameter Name="original_MakeFlag" Type="Boolean" />
 <asp:Parameter Name="original_SafetyStockLevel" Type="Int16" />
 <asp:Parameter Name="original_ReorderPoint" Type="Int16" />
 </UpdateParameters>
 <InsertParameters>
 <asp:Parameter Name="Name" Type="String" />
 <asp:Parameter Name="ProductNumber" Type="String" />
 <asp:Parameter Name="MakeFlag" Type="Boolean" />
 <asp:Parameter Name="SafetyStockLevel" Type="Int16" />
 <asp:Parameter Name="ReorderPoint" Type="Int16" />
 </InsertParameters>
 </asp:SqlDataSource>
 <asp:GridView ID="GridView1" runat="server"
 AllowPaging="True" AllowSorting="True"
 AutoGenerateColumns="False"

Example 4-7. Default.aspx for AWProductDataOrderDetails (continued)

134 | Chapter 4: Saving and Retrieving Data

 DataKeyNames="ProductID" DataSourceID="SqlDataSource1"
 BackColor="#DEBA84" BorderColor="#DEBA84" BorderStyle="None"
 BorderWidth="1px" CellPadding="3" CellSpacing="2"
 OnRowDataBound="GridView1_RowDataBound"
 OnSelectedIndexChanged="GridView1_SelectedIndexChanged">
 <Columns>
 <asp:CommandField ButtonType="Button"
 ShowDeleteButton="True"
 ShowEditButton="True"
 ShowSelectButton="True" />
 <asp:BoundField DataField="ProductID" HeaderText="ID"
 InsertVisible="False"
 ReadOnly="True"
 SortExpression="ProductID" />
 <asp:BoundField DataField="Name" HeaderText="Name"
 SortExpression="Name" />
 <asp:BoundField DataField="ProductNumber"
 HeaderText="ProductNumber"
 SortExpression="ProductNumber" />
 <asp:CheckBoxField DataField="MakeFlag"
 HeaderText="MakeFlag" SortExpression="MakeFlag" />
 <asp:BoundField DataField="SafetyStockLevel"
 HeaderText="SafetyStockLevel"
 SortExpression="SafetyStockLevel" />
 <asp:BoundField DataField="ReorderPoint"
 HeaderText="ReorderPoint"
 SortExpression="ReorderPoint" />
 </Columns>
 <FooterStyle BackColor="#F7DFB5" ForeColor="#8C4510" />
 <RowStyle BackColor="#FFF7E7" ForeColor="#8C4510" />
 <SelectedRowStyle BackColor="#738A9C" Font-Bold="True"
 ForeColor="White" />
 <PagerStyle ForeColor="#8C4510" HorizontalAlign="Center" />
 <HeaderStyle BackColor="#A55129" Font-Bold="True"
 ForeColor="White" />
 </asp:GridView>
 <asp:Label ID="Label1" runat="server" Text="Name"></asp:Label>
 <asp:TextBox ID="txtName" runat="server" ReadOnly="True">
 </asp:TextBox>

 <asp:GridView ID="GridView2" runat="server"
 DataSourceID="AdventureWorksOrderDetails"
 BackColor="#DEBA84" BorderColor="#DEBA84" BorderStyle="None"
 BorderWidth="1px"
 CellPadding="3" CellSpacing="2">
 <FooterStyle BackColor="#F7DFB5" ForeColor="#8C4510" />
 <RowStyle BackColor="#FFF7E7" ForeColor="#8C4510" />
 <SelectedRowStyle BackColor="#738A9C" Font-Bold="True"
 ForeColor="White" />
 <PagerStyle ForeColor="#8C4510" HorizontalAlign="Center" />
 <HeaderStyle BackColor="#A55129" Font-Bold="True"
 ForeColor="White" />
 </asp:GridView>

Example 4-7. Default.aspx for AWProductDataOrderDetails (continued)

Source Code Listings | 135

 <asp:SqlDataSource ID="AdventureWorksOrderDetails" runat="server"
 ConnectionString=
 "<%$ ConnectionStrings:AdventureWorksConnectionString %>"
 SelectCommand="SELECT [SalesOrderID], [CarrierTrackingNumber],
 [OrderQty], [UnitPrice], [UnitPriceDiscount], [LineTotal]
 FROM [Sales].[SalesOrderDetail]
 WHERE ([ProductID] = @ProductID)
 ORDER BY [SalesOrderID]">
 <SelectParameters>
 <asp:ControlParameter
 ControlID="GridView1"
 Name="ProductID"
 PropertyName="SelectedValue"
 Type="Int32" />
 </SelectParameters>
 </asp:SqlDataSource>
 </ContentTemplate>
 </asp:UpdatePanel>

 </form>
</body>
</html>

Example 4-8. Default.aspx.vb for AWProductDataOrderDetails

Partial Class _Default
 Inherits System.Web.UI.Page

 Protected Sub GridView1_RowDataBound(ByVal sender As Object, _
 ByVal e As System.Web.UI.WebControls.GridViewRowEventArgs)
 If e.Row.RowType = DataControlRowType.DataRow Then
 Dim cellProductNumber As TableCell = e.Row.Cells(3) ' ProductNumber
 If cellProductNumber.Text.Substring(0, 2) = "CA" Then
 cellProductNumber.ForeColor = Drawing.Color.Green
 End If

 Dim cellMakeFlag As TableCell = e.Row.Cells(4) ' MakeFlag column
 Dim cb As CheckBox = CType(cellMakeFlag.Controls(0), CheckBox)
 If cb.Checked Then
 e.Row.Cells(2).ForeColor = Drawing.Color.Red
 End If
 End If
 End Sub

 Protected Sub GridView1_SelectedIndexChanged(ByVal sender As Object, _
 ByVal e As System.EventArgs)
 If GridView1.SelectedRow.RowType = DataControlRowType.DataRow Then
 Dim cellName As TableCell = GridView1.SelectedRow.Cells(2) ' Name
 txtName.Text = cellName.Text
 End If
 End Sub
End Class

Example 4-7. Default.aspx for AWProductDataOrderDetails (continued)

136 | Chapter 4: Saving and Retrieving Data

Summary
• Most useful web sites make use of a database. ASP.NET provides controls that

make it easy to connect to a database, and retrieve and edit data.

• The GridView is the most commonly used control for displaying data, although
there are others. The GridView can sort data, and present it in pages, for easy
reading.

• Data controls need to be bound to a data source to display data. To do that, you
provide a DataSource control, which connects to the database and retrieves the
data.

• You configure a DataSource control with a wizard that allows you to set a con-
nection string, and then helps you construct a SQL query for retrieving data, or
you can enter your own custom query.

• You create a new connection with the Add Connection dialog, and then you can
save it in your web.config file for future use.

• The SQL SELECT statement allows you to specify which columns of data you
want to retrieve, and from which table. The Wizard can configure this statement
for you automatically.

• The SQL INSERT, UPDATE, and DELETE statements allow you to add, edit, and
remove data, respectively. The Wizard can also generate these statements for
you automatically, and you can easily add buttons to perform these functions in
your GridView.

• Optimistic concurrency is a technique that protects your data by only changing
the database if no one else has changed it since you read the data. Again, the
Wizard can enable optimistic concurrency for you.

• The WHERE SQL clause filters the data you retrieve by specifying a condition for
the data. A row will only be retrieved if that condition is true.

• You can create event handlers for the GridView, which enables you to take action
on rows as they’re bound, and also allows you to take action on rows as they’re
selected.

• You can provide parameters to the SELECT query, which enables you to display
data in a GridView based on the value of another control, even another GridView.

Adding the ability to access a database is arguably the most powerful improvement
you can make to your site. It’s easy see how accessing a database would make the
Order Form site from previous chapters that much more useful. Even the best order
form, though, can’t retrieve the right data if users don’t give it valid input—if they
enter a four-digit zip code, for example, or an improperly formatted credit card num-
ber. The whole thing would work much more smoothly if there was a way to check
that the user’s responses are valid before you spend the time to access the database.
The good news is that ASP.NET provides such a way, called validation, and that’s
what you’ll learn about in the next chapter.

Exercises | 137

B R A I N B U I L D E R

Quiz
1. What type of control do you need to retrieve data from the database?

2. What is the name of the process for allowing a control, such as a GridView, to
extract data from the retrieved tables and format it properly?

3. What is a connection string?

4. What are the four elements of CRUD?

5. How do you attach a data source to a GridView?

6. If your table has many rows, what should you do in the GridView to make it eas-
ier to read?

7. What does optimistic concurrency do?

8. How can you enable users to change the contents of the database from your
GridView?

9. How can you take an action based on the data in a row, as the table is loaded?

10. How do you filter the amount of data returned from a SELECT query?

Exercises
Exercise 4-1. We’ll start out easy, letting you create your own GridView. Create a
new web site called Exercise 4-1. Add to it a GridView control that shows records
from the Product table with a Weight greater than 100. The GridView should list the
Product ID, Product Name, Product Number, Color, and List Price. The user should
be able to update and delete records, sort by rows, and page through the content.
Use the Professional formatting scheme to give it some style. The result should look
like Figure 4-27.

Exercise 4-2. This one is a little trickier, but it lets you see how users could interact
with the data in a GridView. Copy the web site from Exercise 4-1 to a new web site,
called Exercise 4-2. Add the ability to select rows in your GridView. Add two labels
and two read-only textboxes below the GridView to show the selected item’s Product
Name and color. The result should look like Figure 4-28.

Exercise 4-3. Now it’s time to combine what you’ve learned from previous chapters
with the new stuff, and throw a little AJAX into the mix as well. Create a new AJAX-
enabled web site called Exercise 4-3. This site should have a radio button that gives
readers the opportunity to select whether they want to see data from the Employee
table, or the Customer table. The Employee panel should have a GridView showing
the EmployeeID, ManagerID, and Title. The Customer panel should have a GridView
showing the Customer ID, Account Number, and Customer Type. The table that the

138 | Chapter 4: Saving and Retrieving Data

reader chooses should appear dynamically in a new panel; the other one should be
invisible. The result should look like Figure 4-29.

Exercise 4-4. Ready for a bit of a challenge? Sure you are. You’re going to see how to
retrieve data based on multiple customer selections—like you would in a shopping
site. Create a new web site called Exercise 4-4. This site should have three drop-
down menus:

• A Category menu that lists the product categories from the ProductCategory
table

• A Subcategory menu that lists the subcategories of the Category listed in the first
drop-down, by using the ProductSubcategory table

Figure 4-27. Your goal for Exercise 4-1.

Exercises | 139

• A Color menu that lists the available product colors from the Product menu

In addition, there should be a Submit button that users click. Below all of this is a
GridView that displays the Products (from the Product table) that match the chosen
subcategory and color. (You don’t need to match the category—all that control does
is dictate the contents of the Subcategory table.) The GridView should display the
ProductID, Name, Product number, and the color, just so you can tell it’s working.
(Hint: You can use the DISTINCT SQL statement to avoid duplication in your table.) It
should look like Figure 4-30.

Figure 4-28. Your goal for Exercise 4-2.

140 | Chapter 4: Saving and Retrieving Data

Figure 4-29. Your goal for Exercise 4-3.

Exercises | 141

Figure 4-30. Your goal for Exercise 4-4.

142

Chapter 5CHAPTER 5

Validation 5

As you have seen in the preceding chapters, many web applications involve user
input. The sad fact is, however, that users make mistakes: they skip required fields,
they put in six-digit phone numbers, and they return all manner of incorrectly for-
matted data to your application. Your database routines can choke on corrupted
data, and orders can be lost. An incorrectly entered credit card number or omitted
address may result in a missed sales opportunity. Fortunately, you can write code
that checks the user’s input before it gets anywhere near your database code, or any-
thing else dangerous. The process of verifying the user’s input is called validation.

Traditionally, it takes a great deal of time and effort to write reliable validation code.
You need to check each field and create routines for ensuring data integrity. If bad
data is found, you need to display an error message so the user knows there is a
problem and how to correct it.

In a given application, you may choose to verify that the data is formatted correctly,
or the values fall within a given range, or that certain fields have a value at all. For
example, if you’re processing an order, you may need to ensure that the user has
input an address and phone number, that the phone number has the right number of
digits (and no letters), and that the Social Security number entered is in the appropri-
ate form of nine digits separated by hyphens.

Some applications require more complex validation, in which you validate that one
field is within a range established by two other fields. For example, you might ask in
one field what date the customer wishes to arrive at your hotel, and in a second field
you might ask for the departure date. When the user books a dinner reservation, you’ll
want to ensure that the date the user chooses is between the arrival and departure dates.

There is no limit to the complexity of the validation routines you may need to write.
Credit cards have checksums built into their values, as do ISBN numbers. Zip and
postal codes follow complex patterns, as do international phone numbers. You may
need to validate passwords, membership numbers, dollar amounts, dates, runway
choices, and launch codes.

Validation Controls | 143

In addition, you usually want all of this validation to happen client side so you can
avoid the delay of repeated round trips (postbacks) to the server while the user is
tinkering with his input. In the past, this was solved by writing client-side JavaScript
to validate the input, and then writing server-side script to handle input from brows-
ers that don’t support client-side programming. In addition, as a security check, you
may want to do server-side validation even though you have validation implemented
in the browser, since users can circumvent client-side validation code by creating a
malicious page that masquerades as a legitimate page (a tactic known as spoofing).
Typically, this involved writing your validation code twice, once for the client and
once for the server.

As you can see, in traditional Internet programming, validation requires extensive
custom programming. The ASP.NET framework simplifies this process by providing
rich controls for validating user input. The validation controls allow you to specify
how and where error messages will be displayed: either inline with the input con-
trols, aggregated together in a summary report, or both. You can use these controls
to validate input for both HTML and ASP.NET server controls. In this chapter,
you’ll learn how to use all these validation controls, and you’ll create a number of
pages that you can adapt right away to use on your site.

Validation Controls
You add validation controls to your ASP.NET document as you would add any other
control. Within the declaration of the validation control, you specify which other
control is being validated. You may freely combine the various validation controls,
and you may even write your own custom validation controls, as you’ll see later in
this chapter.

With current browsers that support DHTML, .NET validation is done on the client
side, avoiding the necessity of a round trip to the server. (This client-side validation
uses JavaScript but is not part of the AJAX library.) With older browsers, your code
is unchanged, but the code sent to the client ensures validation at the server.

Sometimes you don’t want any validation to occur, such as when a Cancel button is
clicked. To prevent validation in these circumstances, many postback controls—
such as Button, ImageButton, LinkButton, ListControl, and TextBox—have a
CausesValidation property, which you can set to dictate whether validation is per-
formed on the page when the control’s default event is raised.

If CausesValidation is set to true, the default value—the postback—will not occur if
any control on the page fails validation. If CausesValidation is set to false, however,
no validation will occur when that button is used to post the page.

144 | Chapter 5: Validation

ASP.NET supports the following validation controls:

RequiredFieldValidator
Ensures the user does not leave the field blank and skip over your input control. A
RequiredFieldValidator can be tied to a text box, which means that the page will
only pass validation if the user enters something into the text box. With selection
controls, such as a drop-down or radio buttons, the RequiredFieldValidator
ensures the user makes a selection other than the default value you specify. The
RequiredFieldValidator does not examine the validity of the data but only
ensures that some data is entered or chosen.

RangeValidator
Ensures that the value entered is within a specified lower and upper boundary.
You can specify the range to be within a pair of numbers (greater than 10 and
less than 100), a pair of characters (greater than D and less than K), or a pair of
dates (after 1/1/08 and before 2/28/08).

CompareValidator
Compares the user’s entry against another value. It can compare against a con-
stant you specify at design time, or against a property value of another control. It
can also compare against a database value.

RegularExpressionValidator
One of the most powerful validators, it compares the user’s entry with a regular
expression you provide (we’ll briefly discuss regular expressions later in the
chapter). You can use this validator to check for valid Social Security numbers,
phone numbers, passwords, and so forth.

CustomValidator
If none of these controls meets your needs, you can create your own using the
CustomValidator. This checks the user’s entry against whatever algorithm you
provide in a custom method.

In the remainder of this chapter, we’ll examine how to use each of these controls to
validate data in ASP.NET applications.

The RequiredFieldValidator
The RequiredFieldValidator ensures the user provides a value for your control, or in
the case of drop drop-down lists, that the user picks something other than the
default value.

To get started, create a new web site called RequiredFieldValidator. In this section,
you’re going create the shipping selection web page shown in Design view in
Figure 5-1. This is a pretty standard shipping form, as you can see on any number of
web sites. You can imagine how you’d incorporate such a page into your own site.

The RequiredFieldValidator | 145

This new web site can use the normal ASP.NET Web Site template
rather than the ASP.NET AJAX-Enabled Web Site template. Although
ASP.NET validation controls do much of their work client-side using
JavaScript, they neither use nor depend on the AJAX libraries.

When the user clicks the Submit button, the page is validated to ensure that each
field has been modified. If not, the offending field is marked with an error message in
red, as shown in Figure 5-2.

You’ll use a 3-column, 5-row HTML table to create the page layout, into which
you’ll place the necessary controls. Using what you’ve learned from the previous
chapters, you can create the table fairly easily, either directly in Source view, or using
the Table Wizard, so we won’t go over that here. Adding the controls to the form is
also pretty easy.

The first row of the table will be a single cell spanning all three columns (using the
HTML colspan attribute) containing a Label for displaying any messages. Set the ID
of that Label to lblMsg, and set the Text property to an empty string (text = "").

Figure 5-1. This shipping selection page incorporates RequiredFieldValidator controls to ensure
that users make selections in each field.

146 | Chapter 5: Validation

The first column of the table contains some descriptive captions for the input fields,
with the middle column containing the controls to be validated (a DropDownList, a set
of RadioButtonList, and a TextBox). Use the ListItem Collection Editor to set the val-
ues for the DropDownList to the following:

-- Please Select a Shipper --
US Postal Service
Overnight Express
United Shipping Service
WHL
Pony Express
Starship Transporter

The first item is particularly important, as you’ll see in a minute.

Figure 5-2. The user of this page didn’t provide any shipping information before clicking Submit, so
the RequiredFieldValidator controls return errors, which you can see in the column on the right.

The RequiredFieldValidator | 147

For each field that you want validated, you’ll add a RequiredFieldValidator control,
which is a control like any other. Open the Validation section of the Toolbox, and
drag a RequiredFieldValidator into the third cell of the three middle rows, as shown
in Figure 5-1. (The code-behind for this example is listed in Example 5-1 and the
complete markup is listed in Example 5-2.)

The RequiredFieldValidator control has its own ID, and it also asks for the ID of the
control you wish to validate. Therefore, set the ID of the first RequiredFieldValidator
you added to reqFieldShipper, and set its ControlToValidate property to ddlShipper
(the drop-down list that you are validating). Also be sure to include the text between
the opening and closing tags—“– Please select a shipper –”. (This text could also be
set using the Text property.) All this is shown in the following snippet:

<asp:RequiredFieldValidator
 id="reqFieldShipper"
 ControlToValidate="ddlShipper"
 Display="Static"
 InitialValue="-- Please Select a Shipper --"
 Width="100%" runat=server>
 Please select a shipper
</asp:RequiredFieldValidator>

Make sure the Display attribute is set to Static (the default), which tells ASP.NET to
allocate room on the page for the validator whether or not there is a message to dis-
play. If you set this to Dynamic, space will not be allocated until (and unless) an error
message is displayed. Dynamic allocation is powerful, but it can cause your controls
to bounce around on the page when the message is displayed. We’ll show you how
this looks in a minute.

The RequiredFieldValidator has an additional attribute, InitialValue, which you
should set to the initial value of the control being validated, in this case a drop-down
box. If the user clicks Submit, this initial value will be compared with the value of the
drop-down, and if they are the same, the error message will be displayed. This forces
the user to change the initial value. In this case, you set the InitialValue to a bit of
text asking the user to make a choice. That isn’t a valid selection, so you need to
make sure that the user chooses something else. You don’t want to use InitialValue
if you have a default shipper, for example, because that would prevent the reader
from selecting the default.

Give the second RequiredFieldValidator an ID of reqFieldUrgency, and set its
ControlToValidate property to rblUrgency, to ensure that one of the radio buttons in
rblUrgency is selected. Also change the Text property to “Please select an Urgency”:

<td align=center rowspan=1>
 <asp:RequiredFieldValidator
 id="reqFieldUrgency"
 ControlToValidate="rblUrgency"
 Display="Static"
 InitialValue=""

148 | Chapter 5: Validation

 Width="100%" runat=server>
 Please select an Urgency
 </asp:RequiredFieldValidator>
</td>

You do not need to indicate an initial value this time. Since the control is a radio but-
ton list, the validator knows the user is required to pick one of the buttons; if any
button is chosen, the validation will be satisfied.

Finally, to complete the example, you’ll add a text box and require the user to enter
some text in it. The validator is straightforward; set the text box as the
ControlToValidate, and enter the error message “Please provide special instructions”
into the Text property for display if the box is left empty:

 <!-- Validator for the text box-->
 <td style="HEIGHT: 97px">
 <asp:RequiredFieldValidator
 id="reqFieldBug"
 ControlToValidate="txtInstructions"
 Display="Static"
 Width="100%" runat="server">
 Please provide special instructions
 </asp:RequiredFieldValidator>
 </td>
</tr>

The only code required in the code-behind file is the event handler for the Submit
button. Double-click on the button in Design view, and you’ll be taken to the Click
event handler, as usual. Enter the highlighted code from Example 5-1.

When the Submit button is clicked, the validation for each control is checked, and if
every control is valid, the IsValid property of the page will return true.

Now go back and set all the validation controls to Dynamic. Run the application and see
what happens. No space is allocated for the validation controls, and the browser will
consider your table to be only two columns wide rather than three. That is, the table
will not allocate any space for the validation messages and will recognize only one col-
umn for the prompt and the other for the controls. When you validate the controls (by
clicking the Submit button), the table will widen, which can be either disconcerting or

Example 5-1. Button Click event handler forRequiredFieldValidator

Protected Sub btnSubmit_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) _
 Handles btnSubmit.Click
 If Page.IsValid Then
 lblMsg.Text = "Page is valid!"
 Else
 ' this code never reached
 lblMsg.Text = "Some of the required fields are empty."
 End If
End Sub

The RequiredFieldValidator | 149

attractive, depending on how you manage the display. In this case, you can see the con-
trols jump around when you click Submit, which probably isn’t what you want, so
after you’ve played with it a bit, go back and changed the controls to Static.

Take a look back at Example 5-1. Notice the comment that says the else clause will
never be reached. Recall that the validation occurs client-side. If the page is not valid,
it is never even posted to the server and the server-side code does not run (unless, of
course, you set the CausesValidation property to false, as described at the begin-
ning of this chapter).

You can make your pages a bit friendlier for your users by placing the focus on the
first control that fails validation. To do so, add the SetFocusOnError property to each
validation control and set it to true (the default is false):

<asp:RequiredFieldValidator runat=server
 id="reqFieldInstructions"
 ControlToValidate="txtInstructions"
 Display="Static"
 SetFocusOnError="true"
 Width="100%" >
 Please provide special instructions
</asp:RequiredFieldValidator>

Run your application again, and click Submit without adding special instructions.
After validation, you not only get the message asking you to provide them, but the
focus is on the TextBox control, ready for you to enter text. If you set SetFocusOnError
on more than one control, and if the page is invalid, the focus will be set to the first
control that fails validation and has this property set to true.

The complete source code for the markup file, default.aspx, for this example is listed
in Example 5-2.

Example 5-2. Default.aspx forRequiredFieldValidator

<%@ Page Language="VB" AutoEventWireup="false" CodeFile="Default.aspx.vb"
 Inherits="_Default" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" >
<head runat="server">
 <title>Required Field Validation</title>
</head>
<body>
 <h3>
 Shipping Selection
 </h3>
 <form runat="server" ID="frmBugs">
 <div>
 <table bgcolor=gainsboro cellpadding=10>
 <tr valign="top">

150 | Chapter 5: Validation

 <td colspan=3>
 <!-- Display error messages -->
 <asp:Label ID="lblMsg"
 Text="Please select your preferred shipping method"
 ForeColor="red" Font-Names="Verdana"
 Font-Size="10" runat=server />

 </td>
 </tr>
 <tr>
 <td align=right>
 Shipper
 </td>
 <td>
 <!-- Drop down list with the Shippers (must pick one) -->
 <asp:DropDownList id=ddlShipper runat=server>
 <asp:ListItem>-- Please Select a Shipper --</asp:ListItem>
 <asp:ListItem>US Postal Service</asp:ListItem>
 <asp:ListItem>Overnight Express</asp:ListItem>
 <asp:ListItem>United Shipping Service</asp:ListItem>
 <asp:ListItem>WHL</asp:ListItem>
 <asp:ListItem>Pony Express</asp:ListItem>
 <asp:ListItem>Starship Transporter</asp:ListItem>
 </aspDropDownList>
 </td>
 <!-- Validator for the drop down -->
 <td align=center >
 <asp:RequiredFieldValidator
 id="reqFieldShipper"
 ControlToValidate="ddlShipper"
 Display="Static"
 InitialValue="-- Please Select a Shipper --"
 Width="100%" runat=server>
 Please select a shipper
 </asp:RequiredFieldValidator>
 </td>
 </tr>
 <tr>
 <td align=right>
 <!-- Radio buttons for the urgency -->
 Urgency:
 </td>
 <td>
 <ASP:RadioButtonList id=rblUrgency
 RepeatLayout="Flow" runat=server>
 <asp:ListItem>Today</asp:ListItem>
 <asp:ListItem>2nd Day</asp:ListItem>
 <asp:ListItem>Normal</asp:ListItem>
 <asp:ListItem>Yesterday</asp:ListItem>
 </ASP:RadioButtonList>
 </td>

Example 5-2. Default.aspx forRequiredFieldValidator (continued)

The RequiredFieldValidator | 151

 <!-- Validator for urgency -->
 <td align=center rowspan=1>
 <asp:RequiredFieldValidator
 id="reqFieldUrgency"
 ControlToValidate="rblUrgency"
 Display="Static"
 InitialValue=""
 Width="100%" runat=server>
 Please select an Urgency
 </asp:RequiredFieldValidator>
 </td>
 </tr>
 <tr>
 <td align=right style="HEIGHT: 97px">
 Instructions
 </td>
 <!-- Multi-line text for special instructions -->
 <td style="HEIGHT: 97px">
 <ASP:TextBox id=txtInstructions runat=server width="183px"
 textmode="MultiLine" height="68px"/>
 </td>
 <!-- Validator for the text box-->
 <td style="HEIGHT: 97px">
 <asp:RequiredFieldValidator
 id="reqFieldInstructions"
 ControlToValidate="txtInstructions"
 Display="Static"
 Width="100%" runat=server>
 Please provide special instructions
 </asp:RequiredFieldValidator>
 </td>
 </tr>
 <tr>
 <td>
 </td>
 <td>
 <ASP:Button id=btnSubmit
 text="Submit" runat=server />
 </td>
 <td>
 </td>
 </tr>
 </table>
 </div>
 </form>
</body>
</html>

Example 5-2. Default.aspx forRequiredFieldValidator (continued)

152 | Chapter 5: Validation

The Summary Control
As you saw in the previous example, putting your validation feedback next to each
control can be useful, but leads to some possible layout problems. Fortunately, ASP.
NET lets you decide how you want to report validation errors. For example, rather
than putting error messages alongside the control, you can summarize all the valida-
tion failures with a ValidationSummary control. This control can place a summary of
the errors in a bulleted list, a simple list, or a paragraph that appears elsewhere on
the web page or in a pop-up message box.

To see how this works, create a copy of the RequiredFieldValidator web applica-
tion, called RequiredFieldValidatorSummary. Switch to Source view. From the Valida-
tion section of the Toolbox, drag a ValidationSummary control onto the bottom of the
page, after the </table> tag.

The steps for copying a web site to a new web site are presented in
Appendix A.

Set the attributes of this ValidationSummary control to the values highlighted in the
following code snippet (you can do this in the Properties window as well, of course):

<asp:ValidationSummary ID="valSummary" runat="server"
 DisplayMode="BulletList"
 HeaderText="The following errors were found:"
 ShowSummary="true" />

To make this work, you’ll need to add an ErrorMessage attribute to the other valida-
tion controls. For example, modify the first validation control for the Shipper drop-
down menu as follows:

<asp:RequiredFieldValidator
 id="reqFieldShipper"
 ControlToValidate="ddlShipper"
 Display="Static"
 InitialValue="-- Please Select a Shipper --"
 ErrorMessage="You did not select a shipper from the drop-down."
 Width="100%" runat=server>*
</asp:RequiredFieldValidator>

If this control reports a validation error the text in the ErrorMessage attribute will be
displayed in the summary. You’ve also modified the validator to display an asterisk
rather than the more complete error message. Now that you have a summary, you
don’t need to put a complete error message by each control, you need only flag the
error. Now make similar changes for each of the other RequiredFieldValidator con-
trols (you can use the error text displayed in Figure 5-3, or feel free to improvise).

Run your application, and click Submit without making any choices, so that none of
the validation controls pass muster. The results are shown in Figure 5-3.

The Summary Control | 153

In Figure 5-3, the summary of validation errors is presented as a bulleted list. This is
the default display mode. Messages can also be displayed as a simple list or a single
paragraph, by setting the DisplayMode property of the ValidationSummary to
BulletList, List, or SingleParagraph, respectively.

Figure 5-3. When you use a Validation Summary, the controls that didn’t pass validation are
marked, but more importantly, the summary appears on the page telling the user exactly what’s
wrong.

154 | Chapter 5: Validation

The Compare Validator
While the ability to ensure the user has made some sort of entry is great, you will
often want to validate that the entry content is within certain guidelines. A common
requirement is to compare the user’s input to a constant value, the value of another
control, or a database value.

To see this at work, make a new copy of the RequiredValidationSummary web site and
name the new web site CompareValidator. In this example, you’ll add a new control
that asks the user how many packages he expects to receive as part of a shipment.

To do so, just insert a text box (call it txtNumPackages), a required field validator, and
a compare validator into a new table row before the row that contains the Submit
button. You can do this in either Source view or Design view, although the latter
makes it very easy.

Switch to Design view and hover your mouse at the left edge of the table row con-
taining the Submit button. Click on the Smart Tag that appears to select the row, as
shown in Figure 5-4.

Figure 5-4. Hovering over the Smart Tag for a table row in Design view allows you to select the
row in preparation for inserting a new row above the selected row.

The Compare Validator | 155

From the IDE menus, click on the Layout ➝ Insert ➝ Row Above. This will insert a
blank HTML table row above the selected row. Now drag the relevant controls from
the Toolbox into the correct table cells. The table now looks like Figure 5-5 in
Design view, with the two validation controls in the last cell circled.

The markup for this is shown in Example 5-3.

Figure 5-5. A new table row with a TextBox to be validated and the RequiredFieldValidator and
CompareValidator validation controls in Design view.

Example 5-3. CompareValidator control markup

<tr>
 <td>Number of packages:</td>
 <td>
 <ASP:TextBox id="txtNumPackages" runat=server width="50px" />
 </td>
 <td>
 <asp:RequiredFieldValidator runat="server"
 id="RequiredFieldValidatorNumPackages"
 ControlToValidate="txtNumPackages"
 SetFocusOnError=true

Two validation
controls

156 | Chapter 5: Validation

Run your application again, and try entering various values into the field. You’ll see
that if you enter 0, or a negative number, the validation fails. If you enter a positive
number, the control passes validation. If you leave it blank, you’ll notice that it still
fails. Without the RequiredFieldValidator, though, it would have passed.

Both validators are placed into the same cell in the table, and both validators vali-
date the same control: txtNumPackages. The RequiredFieldValidator is needed because
the CompareValidator will always return true for null or empty values, as nonintui-
tive as that sounds.

The CompareValidator’s ValueToCompare attribute takes a constant, in this case zero.
The Operator attribute determines how the comparison will be made (that is, how
the input value must be related to the ValueToCompare).

The possible values for the Operator attribute are Equal, NotEqual, GreaterThan,
GreaterThanEqual, LessThan, LessThanEqual, and DataTypeCheck. In this example, to
be valid, the input value must be greater than the ValueToCompare constant. Or to put
in more relevant terms, the user must send more than zero packages.

You must use the Type attribute to tell the control what type of value it is using. The
Type attribute takes one of the ValidationDataType enumerated values: Currency,
Date, Double (a Double is VB-speak for a noninteger number, i.e., a decimal number),
Integer, or String. In the example, the values are compared as integers, and thus,
entering (for example) a character will cause the validation to fail.

Checking the Input Type
Rather than checking that the number of packages is greater than zero, you might
want to check that it is a number at all (rather than a letter or date). To do this, you
make a minor change to the CompareValidator.

 ErrorMessage ="You did not enter the number of packages"
 Width="100%" >*
 </asp:RequiredFieldValidator>

 <asp:CompareValidator runat="server"
 id="CompareValidatorNumPackages"
 ControlToValidate="txtNumPackages"
 SetFocusOnError=true
 ErrorMessage ="Invalid number of packages"
 Type="Integer"
 Operator="GreaterThan"

ValueToCompare=0>*</asp:CompareValidator>
 </td>
</tr>

Example 5-3. CompareValidator control markup (continued)

The Compare Validator | 157

Remove the ValueToCompare attribute and change the Operator attribute from
GreaterThan to DataTypeCheck. Because the Type attribute is Integer, the control will
report any integer value as valid. Use the following code to replace that for the
CompareValidator you added in the last section:

<asp:CompareValidator runat="server"
 id="CompareValidatorNumPackages"
 SetFocusOnError=true
 ControlToValidate=" txtNumPackages"
 ErrorMessage ="Invalid number of packages"
 Type="Integer"
 Operator="DataTypeCheck">*
</asp:CompareValidator>

Now run the application again, and try entering random data in the text box. You’ll
see that numbers, even zero or negative numbers, pass validation, while anything else
fails. You can imagine how this sort of validation would be useful for order num-
bers, credit card numbers, or anyplace where the type of data is important.

Comparing to Another Control
You can compare a value in one control to the value in another control, rather than
to a constant. A classic use of this might be to ask the user to enter his password
twice and then validate that both entries are identical.

The common scenario is that you’ve asked the user to pick a new password. For
security, when the password is entered, the text is disguised with asterisks. Because
this will be the password the user will need to log in, you must validate the user
entered the password as intended, without errors. The typical solution is to ask the
user to enter the password a second time, and then check that the same password
was entered each time. The CompareValidator is perfect for this.

To demonstrate this, you’ll need to add two table rows to your page, each with a
TextBox for use as a password field. The first of these password fields will have a
RequiredFieldValidator control; the second will have both a RequiredFieldValidator
and a CompareValidator. You can add these rows and controls as you just did in
Design view, or directly in Source view. Either way, the markup will look something
like that listed in Example 5-4. Be sure to set the correct ControlToValidate attributes
of all these new validation controls, as well as the other attributes.

Example 5-4. Password validation usingCompareValidator control

<!-- Text fields for passwords -->
<tr>
 <td>Enter your password:</td>
 <td>
 <asp:TextBox id="txtPasswd1" runat="server"
 TextMode="Password"
 Width="80"></asp:TextBox>
 </td>

158 | Chapter 5: Validation

Go ahead and test it out. If the strings you enter don’t match, the control will fail
validation.

The first table row contains the TextBox control with its TextMode attribute set to
"Password". It also contains a RequiredFieldValidator to ensure the user doesn’t
leave the field blank.

 <td>
 <!-- required to enter the password -->
 <asp:RequiredFieldValidator runat="server"
 id="ReqFieldTxtPassword1"
 ControlToValidate="txtPasswd1"
 ErrorMessage ="Please enter your password"
 Width="100%" >*
 </asp:RequiredFieldValidator>
 </td>
</tr>

<!-- Second password for comparison -->
<tr>
 <td>Re-enter your password:</td>
 <td>
 <asp:TextBox id="txtPasswd2" runat="server"
 TextMode="Password"
 Width="80"></asp:TextBox>
 </td>

 <td>
 <!-- Second password is required -->
 <asp:RequiredFieldValidator runat="server"
 id="ReqFieldTxtPassword2"
 ControlToValidate="txtPasswd2"
 SetFocusOnError="true"
 ErrorMessage ="Please re-enter your password"
 Width="100%" >*
 </asp:RequiredFieldValidator>

 <!-- Second password must match the first -->
 <asp:CompareValidator runat=server
 id="CompValPasswords"
 ControlToValidate="txtPasswd2"
 ErrorMessage ="Passwords do not match"
 SetFocusOnError="true"
 Type="String"
 Operator="Equal"
 ControlToCompare="txtPasswd1">*
 </asp:CompareValidator>
 </td>
</tr>

Example 5-4. Password validation usingCompareValidator control (continued)

Range Checking | 159

The second row contains a second password text box and a second
RequiredFieldValidator (again, the user cannot leave the field blank), but it uses a
CompareValidator to check the value of its associated TextBox (txtPasswd2) against
that of the first TextBox (txtPasswd1) to verify they both have the same content. The
Operator property is set to Equal and the Type property is set to String, so the two
strings must match. Notice the two properties set:

ControlToValidate="txtPasswd2"
ControlToCompare="txtPasswd1"

Both text boxes must have a RequiredField validator. If the
CompareValidator compares a string against a null or empty string
value, it will pass validation.

Range Checking
At times, you’ll want to validate that a user’s entry falls within a specific range. That
range can be within a pair of numbers, characters, or dates. In addition, you can
express the boundaries for the range by using constants or by comparing its value
with values found in other controls.

In this example, you’ll prompt the user for a number between 10 and 20, and then
validate the answer to ensure it was entered properly. To do so, create a new AJAX-
enabled web site named RangeValidator. You’ll create this exercise entirely in Design
mode. To begin, drag four controls onto your page: a label, a text box, a button, and
of course, a RangeValidator control, as shown in Figure 5-6.

Figure 5-6. Create the RangeValidator page in Design mode. Notice how the RangeValidator
control shows up.

160 | Chapter 5: Validation

Click on the Label and set its Text property to “Enter a number between 10 and 20:”.
Click on the TextBox, set its ID to txtValue. Click the button and set its Text to
Submit. Finally, click on the RangeValidator, and in the Properties window click Type.
Choose Integer from the drop-down list. Set the MinimumValue property to 10 and the
MaximumValue property to 20. Next, click on the ControlToValidate property, pick the
text box, and set the Text property to “Between 10 and 20 please.”

Run your application. Enter a value and click Submit. The text “Between 10 and 20
please” will be displayed if the value is not within the range of values specified by the
MinimumValue and MaximumValue attributes. The Type attribute designates how the
value should be evaluated and may be any of the following types: Currency, Date,
Double, Integer, or String.

If there are no validation errors, the page can be submitted; otherwise, the range
checking error message is displayed.

If the user leaves the field blank, the validation will pass and the page will be submit-
ted. You’ll want to ensure some value is entered, so add a RequiredFieldValidator in
addition to the RangeValidator.

Regular Expressions
Often, a simple value or range check is insufficient; you must check that the form of
the data entered is correct. For example, you may need to ensure that a zip code is five
digits with the option to accept an extra four digits, an email address is in the form
name@place.com, credit card information matches the right format, and so forth.

A regular expression validator allows you to verify that a text field matches a regular
expression. Regular expressions are a language for describing and manipulating text.

For complete coverage of regular expressions, see Mastering Regular
Expressions, by Jeffrey Friedl (O’Reilly).

A regular expression consists of two types of characters: literals and metacharacters.
A literal is a character you wish to match in the target string. A metacharacter is a
special symbol that acts as a command to the regular expression parser. (The parser
is the engine responsible for understanding the regular expression.)

Consider this regular expression:

^\d{5}$

This will match any string that has exactly five numerals. The initial metacharacter,
^, indicates the beginning of the string. The second metacharacter, \d, indicates a
digit. The third metacharacter, {5}, indicates five of the digits, and the final meta-
character, $, indicates the end of the string. Thus, this regular expression matches
five digits between the beginning and end of the line and nothing else.

name@place.com

Regular Expressions | 161

When you use a RegularExpressionValidator control with client-side
validation, the regular expressions are matched using Jscript, the
Microsoft version of JavaScript. This may differ in small details from
the regular expression checking done on the server.

A more sophisticated algorithm might accept a five-digit zip code or a nine-digit zip
code in the format of 12345-1234 by using the | metacharacter which represents the
“or” operator. Rather than using the \d metacharacter, you could designate the range
of acceptable values:

[0-9]{5}|[0-9]{5}-[0-9]{4}

To see how this works, make a copy of the RangeValidator example you just created,
and name it RegularExpressionValidator. Replace the RangeValidator control with a
RegularExpressionValidator control.

Use the Properties window to set the ControlToValidate to txtValue and set the text
to “Please enter a valid U.S. zip code.” Click on the property for Validation Expres-
sion, and click on the ellipsis. A Regular Expression Editor pops up with a few com-
mon regular expressions, or you can enter your own. Scroll down and choose U.S.
ZIP code, as shown in Figure 5-7.

Figure 5-7. The Regular Expression Editor makes it a snap to use the RegularExpressionValidator.
Just select the ValidationExpression in the Properties window, and then click the ellipsis button to
open the editor.

162 | Chapter 5: Validation

Run the program, and test out the field by entering some responses. You will see that
either a standard five digit zip code or a “Zip+4” will pass validation, but anything
else will fail.

If you choose “Custom,” the Validation expression box will be blank,
allowing you to enter any expression you choose. For help with creat-
ing custom regular expressions, we recommend the program RegEx
Buddy (http://www.RegExBuddy.com).

Custom Validation
There are times when the validation of your data is so specific to your application
that you will need to write your own validation method. The CustomValidator is
designed to provide all the infrastructure support you need. You point to your
validation method and have it return a Boolean value: true or false. The
CustomValidator control takes care of all the rest of the work.

Because validation can be performed on both the client (depending on the browser)
and the server, the CustomValidator has attributes for specifying a server-side and a
client-side method for validation. The server-side method can be written in any .NET
language, such as C# or VB.NET, but the client-side method must be written in a
scripting language understood by the browser, such as VBScript or JavaScript.

The code functionality is duplicated on the server for two reasons. First, as men-
tioned at the beginning of this chapter, it prevents a malicious user from bypassing
the client-side validation, and second, it makes the page compatible with older
browsers which may not support client-side validation.

To get you started, once again copy the RegularExpressionValidator web site to a
new site named CustomValidator. In this example, you want to ensure that the user
enters an even number.

This time, you’ll report an error if the number is not evenly divisible by 2. You can
imagine, however, that you could use this technique to perform a checksum on a
credit card or ISBN number or otherwise perform complex data checking.

Most of these checks can be done more easily with a Regular Expres-
sion Validator; the custom validator should be used only as a last
resort.

Replace the RegularExpressionValidator with a CustomValidator. Set the
ControlToValidate field to the ID of the appropriate TextBox, and set
EnableClientScript to true (the default). Set the Text property to “Please enter an
even number.”

http://www.RegExBuddy.com

Custom Validation | 163

CustomValidators have an additional property that can save you a lot of special cod-
ing: ValidateEmptyText.

ValidateEmptyText=false

By setting this property to false (the default), the text field will be considered invalid
if it is empty, avoiding the need for the RequireFieldValidator that you needed in the
previous examples.

The key to making your custom validator work is in setting the client-side validator,
which you do in the ClientValidationFunction property. Set this property to
ClientValidator, which is the name of a JavaScript function you are going to write
momentarily. Also, click the Events lightning bolt button and set the ServerValidate
event handler to ServerValidator, a method in the code-behind you are also going to
write in just a bit.

To create the JavaScript function, add the following code directly to the markup file
in Source view, between the closing </head> element and the opening <body>
element:

<script language="javascript" type="text/javascript" >
 function ClientValidator(source, args)
 {
 if (args.Value % 2 == 0)
 args.IsValid=true;
 else
 args.IsValid=false;
 return;
 }
</script>

This function examines the value passed to the script by the validator; if it is an even
number, it will return true. Otherwise, it will return false.

The standard test for determining if an integer is even or odd is to
divide by 2, and check the remainder. If the remainder is 0, the integer
is even. If it’s 1, the integer is odd.

The function for determining the remainder is called the modulus. In
JavaScript (as in most programming languages), the % operator repre-
sents the modulus. In other words, if your integer is stored in the vari-
able value, then value % 2 is equal to 0 if value is even.

In VB.NET, the modulus is represented by the Mod operator, not the %
operator.

You’ll implement the server-side method in the code behind file, default.aspx.vb.
Copy the highlighted code from Example 5-5 to the code skeleton for
ServerValidator you created above.

164 | Chapter 5: Validation

This method does the same thing as the client-side validator, only in VB rather than
in JavaScript. There are a few things to notice about these methods. First, the value
that the CustomValidator is examining is passed to your routine as the Value prop-
erty of the ServerValidateEventArgs event argument. You convert that string to an
int using the Base Class Library Int32 object’s static Parse method, as shown.

The declaration for the CustomValidator in the content file sets the client-side
method and the server-side method you’ve designated.

<asp:CustomValidator runat="server"
 ID="CustomValidator1"
 ControlToValidate="txtValue"
 ValidateEmptyText=false
 ClientValidationFunction="ClientValidator"
 OnServerValidate="ServerValidator">
 Please enter an even number
</asp:CustomValidator>

If you run this program in a current browser and enter an odd number, the page will
never be posted back to the server; the JavaScript handles the validation on the
browser. If you enter an even number, however, the client-side script and the server-
side script will run (to protect against spoofing from the client).

Summary
• Users will enter improperly formatted data into your forms, but validation can

allow the controls to check that data before it’s accepted by your server.

• ASP.NET provides validation controls that can check for a number of common
user errors.

• Current browsers can validate input on the client side, eliminating a round trip
to the server.

• The RequiredFieldValidator simply checks that the user has made a choice in
the specified control. On TextBoxes and DropDownLists, this validator can also
make certain that the user has selected an item other than the initial value.

Example 5-5. Server-side custom validation code

Protected Sub ServerValidator(ByVal source As Object, _
 ByVal args As System.Web.UI.WebControls.ServerValidateEventArgs) _
 Handles CustomValidator1.ServerValidate

 args.IsValid = False
 Dim evenNumber As Integer = Int32.Parse(args.Value)
 If evenNumber Mod 2 = 0 Then
 args.IsValid = True
 End If

End Sub

Summary | 165

• If you set the SetFocusOnError property to true, the focus is automatically placed
on the control that fails validation, making it easier for the user to find.

• You can use the ValidationSummary control to provide detailed feedback to the
user in a single spot on your page. You can still mark the individual controls that
failed validation, but you don’t need to put a lengthy error message next to the
control.

• With the CompareValidator control, you can check the user’s input against a con-
stant value, a database value, or the value of another control. You can check if
the input is greater than, less than, or equal to the specified value, or you can
simply check that the input is of the desired data type.

• The RangeValidator control checks to see if the user’s input falls within an
appropriate range. You can specify the maximum and minimum values of the
range.

• Regular expressions are a language that uses literals and metacharacters to
describe and search text strings.

• With the RegularExpressionValidator, you can check that the user’s input meets
the expected pattern for data such as a phone number, a zip code, an email
address, or other variations. The Regular Expression Editor provides some com-
mon regular expressions, or you can provide your own.

• If none of the existing controls provides the validation you need, you can use a
CustomValidator to add custom JavaScript code to evaluate the user’s input.
Your custom code can do anything you like, but it can only return true or false.

You’ve created a lot of pages so far, and most of them have had familiar elements
that you see as you browse the web every day—form controls, database access, and
postbacks, among others. What you have not done so far, though, is create a page
that looks like something you’d see on the Web. For that, you need style, and we
don’t just mean good fashion sense. In the next chapter, you’ll learn how to provide
a uniform, professional look to all your pages, and how to include special touches,
such as navigation tools, that separate a quality web site from just a collection of
controls.

166 | Chapter 5: Validation

B R A I N B U I L D E R

Quiz
1. What is the reason for validation?

2. What do you do if you want a button to post the page without checking validation?

3. What is the best type of validator to use for a radio button list?

4. What’s the difference between the Static and Dynamic values of the Display
property?

5. Suppose the first item in your drop-down list is “Choose a payment method.”
How do you make sure users choose one?

6. What’s the benefit of using the ValidationSummary control?

7. What control should you use to make sure the user can’t order more of a single
item than you actually have in stock?

8. Suppose you run a hotel that requires at least two guests stay in a double room,
but no more than five guests. What control should you use on the “Number of
guests” field?

9. How do you check that the user has entered a valid email address?

10. Suppose your theme park offers discounts to customers between the ages of 6
and 12, and also customers over 65. What kind of control would you use to vali-
date the customer is eligible for a discount, while still using a single age field?

Exercises
Exercise 5-1. In the exercises in this chapter, you’re going to create a form that users
can fill out if they want to participate in a friendly phone survey (I’m told some people
like to get survey calls in the middle of dinner). To begin, create a page with a table
with three columns: label, control, and validator. Then add text boxes for the user’s
name, address, city, state, and zip code. Be sure to add the appropriate validators for
each field—don’t worry about the format of the input right now; you just want to
make sure that something is filled in. Finally, add a Submit button. It doesn’t matter
too much what this form looks like, but it could look something like Figure 5-8.

Exercise 5-2. Let’s make things a little more interesting this time. For starters, remove
the text from the individual validators to error messages, and add a summary control
at the bottom of the form, above the Submit button. Next, you don’t want anyone
participating in the survey if they’re under 18, so add another label and field asking
for the user’s age. Add appropriate validators to make sure the user isn’t too young.
Because you’re polite, you’ll ask for a date when you should call the user, but your
survey is only going on in July 2007. Add another table row with a label and a field
asking for a date, and add the appropriate validators to make sure the date is some-
time in July 2007. Your form should look something like Figure 5-9.

Exercises | 167

Figure 5-8. Your goal for Exercise 5-1.

Figure 5-9. Your goal for Exercise 5-2.

168 | Chapter 5: Validation

Exercise 5-3. If the user doesn’t mind being called at home, you might as well make
a follow-up call to ask additional survey questions. This call still has to take place in
July, but if it’s a follow-up call, it would have to be later than the first call. Add a row
to the table with a label and textbox where users can enter a date for the follow-up
call, and add appropriate validators to make sure the follow-up call comes after the
initial call. The result should look something like Figure 5-10.

Exercise 5-4. If you’re going to call the user at home, you’ll need a phone number to
call. If the user is willing to give out his phone number, you might as well get his
email address as well. After all, you never know when you’ll need it. But if the user
forgets a digit, or leaves off the “.com” from his email address, it’ll do you no good.
Add two more rows to the table, with labels and text fields where the user can enter
a phone number and email address. Then add the appropriate validators to make
sure that the input is in the correct form. The form should look something like
Figure 5-11.

Figure 5-10. Your goal for Exercise 5-3.

Exercises | 169

Figure 5-11. Your goal for Exercise 5-4.

170

Chapter 6CHAPTER 6

Style Sheets, Master Pages,
and Navigation 6

Back in the early mists of time, when the Earth was young and the Web was new
(Circa 1994) we created web pages in HTML (HyperText Markup Language). After
many eons (or so it seemed), we were able to add styles to the HTML elements,
allowing us to take greater control over the presentation of web pages.

Eventually content (the HTML) was divided from presentation and layout through
the use of styles, and that was good. In fact, it came to pass that presentation infor-
mation was given its own file—a style sheet—to allow for reuse, a consistent presen-
tation across many pages, and easier maintenance, and that was very good indeed.

Styles and style sheets are a significant, but often overlooked tool for web develop-
ers, too often ignored by “programmers” who disparage style sheets as being in the
realm of “designers”—leading to the creation of web applications that are terribly
difficult to maintain.

A new innovation for creating sites with a common look and feel across all of the
pages are Master Pages, covered later in this chapter. Master Pages can easily contain
menus and other navigational aids such as site maps and bread crumbs, and these
too will be covered in this chapter.

Styles and Style Sheets
A style specifies how an object will be rendered to an output device, typically a
browser. Styles can be used to manipulate the layout and appearance of controls and
text, detailing every aspect from border color to font size.

Web applications use styles to ensure attractive and reasonable display on a wide
variety of devices, including desktop and laptop computers, tablet PCs, mobile PCs,
telephones, PDAs, televisions, printers, audio devices and media not yet imagined.

Both HTML and ASP.NET controls apply styles through the use of properties and
attributes. There are three ways to apply styles to an element on a web page:

Styles and Style Sheets | 171

Inline
The style is implemented as an attribute of a specific element.

Document
A set of styles are declared on and for a single HTML page.

External
A style sheet is created and “included” in one or more HTML pages.

Cascading Style Sheets
External style sheets are called cascading style sheets (CSS), because the style specifi-
cations cascade down from the most general (the external style sheet), to the more
specific (document level styles), to the most specific (styles applied to particular
elements).

If your style sheet says that text boxes should have a white background, but one par-
ticular page says that its textboxes will have gray backgrounds, and on that page the
seventh text box has its own style calling for a yellow background, the rules will cas-
cade—style sheet, to document, to element. All other pages in your web site will
have text boxes whose background color is controlled by the style sheet. Your one
document will have text boxes with gray backgrounds, except for the seventh text
box, which will have…you guessed it! A yellow background.

For a complete discussion of CSS, see the following books: HTML &
XHTML: The Definitive Guide, by Chuck Musciano and Bill Kennedy,
or CSS: The Definitive Guide, by Eric Meyer, both published by
O’Reilly.

Inline Styles
You can apply styles to a specific element using the inline style attribute, as shown
in the following snippet:

<input type="text" value="Sample text" style="color:Red;font-family:Arial;
 font-weight:bold;width:150px;" />

The style attribute contains one or more style properties, each consisting of a prop-
erty name and value separated by a colon. Each property-value pair is separated from
the next pair by a semicolon.

When you’re using ASP.NET controls, you may set inline styles either in the markup
or as properties in design view.

Create a new web site called AspNetInlineStyles. Switch to Design view and drag a
TextBox control from the Standard section of the Toolbox onto the page. In the Prop-
erties window, set the following properties (you’ll need to expand the Font group to
set the first two properties):

172 | Chapter 6: Style Sheets, Master Pages, and Navigation

The resulting Design view should look something like Figure 6-1.

When you set the Font Name property, the IDE automatically fills in
the Names property for you.

Run the application. When the page comes up in the browser, view the source by
clicking on the View ➝ Source menu item in IE6 or Page ➝ View Source in IE7.

Notice how this ASP.NET TextBox is rendered to the page:

<input name="TextBox1" type="text" value="Sample text" id="TextBox1"
 style="color:Red;font-family:Arial;font-weight:bold;width:150px;" />

Property Value

Font-Bold True

Font-Name Arial

ForeColor Red

Text Sample Text

Width 150px

Figure 6-1. You’ve set the inline style properties on this TextBox by using the IDE.

Styles and Style Sheets | 173

It is the same as if you had coded HTML with inline styles, which is, in fact what
ASP.NET sends to the browser based on the ASP.NET controls and their properties.

You can also set or change style properties programmatically (as you can any control
property).

To see this, close the browser, then drag a Button control from the Standard section
of the Toolbox onto the page. Using an If-Then-Else statement, change its Text
property to toggle between two colors.

Double-click the Button in Design view to open up the event handler for the Click
event. Enter the highlighted code from Example 6-1.

Run the application. Each time you click the button, the ForeColor property will
toggle between Red and Green.

Pros and cons

Inline properties are excellent for overriding the styles in your style sheet for a partic-
ular control. Unfortunately, they are very easy to use instead of style sheets, and pro-
grammers are often seduced into using inline styles to excess, creating markup that is
very difficult to maintain.

Document-Level Styles
Just as you can use inline styles to override a style sheet for a single control, you can
also add styles to a single document to override a particular setting for that one page.
This is an error-prone technique for any multipage web site (that is, for virtually any
serious web site), so we will be brief in our presentation of how to use them.

Document level styles are added to a page with a <style> element in the <head> section
of the page as shown in Example 6-2. In this web site, called AspNetDocumentLevel-
Styles, the style for the top-level heading, <h1>, will be overridden to display in red,
bold, italicized text. Also, a new style will be defined, called GreenText.

Example 6-1. ButtonClick Event handler

Protected Sub Button1_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Button1.Click
 If TextBox1.ForeColor = Drawing.Color.Red Then
 TextBox1.ForeColor = Drawing.Color.Green
 Else
 TextBox1.ForeColor = Drawing.Color.Red
 End If
End Sub

174 | Chapter 6: Style Sheets, Master Pages, and Navigation

Note the period in front of the GreenText style name; it is required.

Also, notice that the style definitions are embedded between HTML comment char-
acters. This is for the benefit of very old browsers that may not recognize styles; they
will ignore the styles enclosed in comments.

Figure 6-2 displays the results of this style change.

Pros and cons

It is tempting to use a document-level style either to set the styles for that page or to
override the general styles for the entire site. This can be effective, but tends to be
hard to maintain.

Experience shows that collecting styles into a set of external style sheets, even if some
styles are targeted at a subset of pages (where that subset could be as small as a sin-
gle page) tends to be far easier to maintain in the long term.

Example 6-2. Default.aspx for AspNetDocumentLevelStyles

<%@ Page Language="VB" AutoEventWireup="false" CodeFile="Default.aspx.vb" Inherits="_
Default" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" >
<head runat="server">
 <title> Special Page </title>
 <style type="text/css">
 <!--
 h1 {color: red; font-style:italic; font-weight:bold;}
 .GreenText {color:green;}
 -->
 </style>
</head>
<body>
 <form id="form1" runat="server">
 <div>
 <h1>A Sample Heading</h1>
 <div class="GreenText">some green text</div>
 <asp:Label ID="Label1" runat="server"
 Text="Green text in an ASP.NET Label control."
 CssClass="GreenText"></asp:Label>
 </div>
 </form>
</body>
</html>

Styles and Style Sheets | 175

External Style Sheets
The net result is that in most applications, styles are defined in an external file, called
(somewhat confusingly) a style sheet (or, as already mentioned, a “Cascading Style
Sheet,” or even an “External Style Sheet.”) This style sheet is “imported” into each
page by a directive at the top of the .aspx page.

To complicate things further, you are not limited to a single style sheet for your
entire application. In fact, you are free to create separate style sheets for different sec-
tions of your application, or for rendering to different devices.

You first saw the use of a CSS style sheet back in Chapter 3, where you used styles to
differentiate the watermarked and unwatermarked text boxes. Look at the CSS Style
sheet created for that application, reproduced here in Example 6-3.

Figure 6-2. The result of using document-level styles. It looks perfectly fine for this one page, but
across a whole site, using document-level styles is tough to maintain.

Example 6-3. StyleSheet.cssfor AdventureWorksWatermarks web site

body {
}
.watermarked {
 padding:2px 0 0 2px;
 border:1px solid #BEBEBE;
 background-color:#F0F8FF;
 color:gray;
 font-family:Verdana;
 font-weight:lighter;
}

176 | Chapter 6: Style Sheets, Master Pages, and Navigation

There are two style classes in this style sheet: watermarked and unwatermarked.

Style classes are defined with a leading period, followed by the name
of the class, and then the definition of the style class enclosed in
braces. To use a style class, the element must specifically identify the
class it wants to use, such as:

<asp:TextBox CssClass="watermarked"...

Your style sheet can also define styles for “selectors”, and these styles
will automatically be applied to matching elements. For example, if
you define a selector for the <p> (paragraph) element, all paragraph
elements would have that style applied.

The application of styles to both classes and selectors can become
complex once you begin nesting, which is why we strongly recom-
mend reading a solid book on CSS syntax (such as those mentioned in
the note above). The names used for style classes are case sensitive. If
your style sheet has a class called watermarked and you assign the class
name Watermarked (with a capital W) it will be ignored, with no error
message, leading to many happy hours of debugging.

To see style sheets at work, create a new web site called AspNetExternalStyles.

Click on the Website ➝ Add New Item… menu item and add a style sheet. You could
use the default name of StyleSheet.css, since we will only be using a single style sheet
in this web site, but let’s call it MyStyleSheet.css.

The default style sheet template looks like the following, with an empty selector for
the body element:

body {
}

Add the highlighted code from Example 6-4 to your style sheet to define three style
classes for different headings, plus an overridden selector for all paragraph elements.
As you type, IntelliSense will show all possible style attributes and provide hints for
valid values.

.unwatermarked {
 height:18px;
 width:148px;
 font-weight:bold;
}

Example 6-4. MyStyleSheet.css

body {
}
p {color:blue}
.MyHeading1
{

Example 6-3. StyleSheet.cssfor AdventureWorksWatermarks web site (continued)

Styles and Style Sheets | 177

There are a number of possible units of measurement you can use for attributes that
require absolute values, such as padding and line-height, In addition, Relative units,
which are relative to the other content on the page, are also available. Table 6-1 lists
both.

 font-family:Arial Black, Sans-Serif;
 font-style:normal;
 font-weight:bold;
 font-size:xx-large;
 background-color:Aqua;
 color:Red;
 padding-left:.5in;
 padding-right:.5in;
 line-height:1.5in;
}
.MyHeading2
{
 font-family:Arial Black, Sans-Serif;
 font-style:normal;
 font-weight:bold;
 font-size:x-large;
 background-color:Aqua;
 color:Blue;
 padding-left:.1in;
 padding-right:.1in;
 line-height:.75in;
}
.MyHeading3
{
 font-family:Arial Black, Sans-Serif;
 font-style:normal;
 font-weight:bold;
 font-size:large;
 color:Black;
}
.BodyText
{
 font-family:Times New Roman, Serif;
 font-style:normal;
 font-weight:bolder;
 font-size:medium;
}

Table 6-1. Style length units

Unit Abbreviation Type

Width of lowercase “M” em Relative

Height of letter “x” ex Relative

Pixels px Absolute

Inches In Absolute

Example 6-4. MyStyleSheet.css (continued)

178 | Chapter 6: Style Sheets, Master Pages, and Navigation

Any length property can be prefixed with either a plus (+) or minus (–) sign to indi-
cate that the value is to be added or subtracted from the current value of the
property.

Open the default.aspx file in the IDE. Switch to Design view, and drag a Label con-
trol onto the page. Set the Text property to Heading 1. Set the CssClass property to
MyHeading1.

Type in some text on the page, select it, and apply the paragraph style to it.

Now drag a second Label control onto the page. Set its Text property to Heading 2
and the CssClass property to MyHeading2. Type some more text on the page after the
label.

Drag a third label on the page. Set the Text property to Heading 3 and the CssClass
property to MyHeading3. Type some more text on the page.

Add two more Label controls with the CssClass set to MyHeading2 and MyHeading3,
along with some text.

To format the text under both MyHeading3 headings, switch to Source view and
insert some <div> or elements so that you can apply the BodyText style.

In order to apply a style to an ASP.NET control, you use the CssClass
property. However, to apply a style to an HTML control, you use the
class property.

And, just as a bit of HTML refresher, both <div> and elements
are used primarily to apply style to some content. The difference is
that a <div> element incorporates a line break before and after, while a
 element does not, displaying its content inline with its con-
tainer. It is convenient to think of a <div> as creating a block, while a
 delineates a series of characters.

Before the styles will take effect, you need to import the style sheet to the page. Insert
the following highlighted line of markup between the opening and closing head tags:

<head runat="server">
 <style type="text/css">@import url(MyStyleSheet.css);</style>
 <title>Untitled Page</title>
</head>

Centimeters cm Absolute

Millimeters mm Absolute

Points (1/72 inch) pt Absolute

Picas (equal to 12 points or 1/6 inch) pc Absolute

Percentage % Percentage

Table 6-1. Style length units (continued)

Unit Abbreviation Type

Styles and Style Sheets | 179

The Design view will now look something like Figure 6-3.

Example 6-5 presents the Source view for Default.aspx.

Figure 6-3. Your AspNetExternalStyles page, in Design view, where you can see all the styles
applied.

Example 6-5. Default.aspx for AspNetExternalStyles

<%@ Page Language="VB" AutoEventWireup="false" CodeFile="Default.aspx.vb"
 Inherits="_Default" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" >
<head runat="server">
 <style type="text/css">@import url(MyStyleSheet.css);</style>
 <title>Untitled Page</title>
</head>
<body>
 <form id="form1" runat="server">
 <div>
 <asp:Label ID="Label1" runat="server" CssClass="MyHeading1"
 Text="Heading 1"></asp:Label>
 <p>
 This is a blue paragraph.
 </p>

180 | Chapter 6: Style Sheets, Master Pages, and Navigation

The highlighted line uses the @import command to import the style sheet specified in
the URL. In this case, a relative URL is provided, which refers to our style sheet in
the current directory. Because it is a URL, it can be either relative or absolute. For
example, you could provide an absolute URL such as http://CorporateWebSite.com/
stylesheets/handhelds.css.

The @import command must appear in the <head> element, and before
any conventional style rules are specified. Otherwise, the imported
style sheet will be ignored. This allows the browser to properly cas-
cade styles from the external style sheet down to the element-level
styles.

The resulting page is shown in Figure 6-4.

Master Pages
A master page acts as a shell or frame shared by all the other pages (or some of the
other pages) on your site. It is common to put a logo and perhaps a menu into the
master page so that these elements appear at the same location on every page with-
out your having to recode them.

 <asp:Label ID="Label2" runat="server" CssClass="MyHeading2"
 Text="Heading 2"></asp:Label>

 Some more text.

 <asp:Label ID="Label3" runat="server" CssClass="MyHeading3"
 Text="Heading 3"></asp:Label>
 <div class="BodyText">
 Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do
 eiusmod tempor incididunt ut labore et dolore magna aliqua.
 </div>
 <asp:Label ID="Label4" runat="server" CssClass="MyHeading2"
 Text="Another Heading 2"></asp:Label>

 <asp:Label ID="Label5" runat="server" CssClass="MyHeading3"
 Text="Another Heading 3"></asp:Label>

 Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris
 nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in
 reprehenderit in voluptate velit esse cillum dolore eu fugiat
 nulla pariatur.

 </div>
 </form>
</body>
</html>

Example 6-5. Default.aspx for AspNetExternalStyles (continued)

Master Pages | 181

Within the master page, you place one or more content placeholder areas, which will
be filled with the contents of each of the child pages. This is shown in Figure 6-5.

Unlike cascading style sheets (CSS), which help ensure that similar
controls have similar appearances (see the previous section), master
pages ensure that all the pages on your site have common elements
such as logos, headings, footers, or navigation aids.

To use master pages, follow these steps:

1. Create a new web site.

2. Add a master page to the site.

3. Add content pages based on the master page.

Figure 6-4. This is what the AspNetExternalStyles page looks like in your browser. You need to
include the @import statement in your page so that the styles are loaded along with the page
content.

182 | Chapter 6: Style Sheets, Master Pages, and Navigation

Creating a Master Page
To begin, create a new web site and call it MasterPages. Once the new site opens
click on Website ➝ Add New Item…. Select Master Page in the dialog box and give it
the name, CorpMasterPage.master, as shown in Figure 6-6. Be sure to check the
“Place code in separate file” checkbox, as indicated in the figure. This causes the
code-behind file to be created automatically.

Even though we don’t actually use any server-side code in the master
page in this chapter, it is good practice to segregate all your server-side
code in a code-behind file, rather than in a script block in the markup
file.

Figure 6-5. The master page defines the content that should appear on every page of your site, and
has placeholders for the content of the individual child pages. When you put them together, you get
a web site with a uniform appearance.

+

Content page designMaster page design

Master Pages | 183

All master pages must have the extension .master.

Your new master page has been created with an <asp:contentplaceholder> control
declaration already in place. Switch to Source view and change the ID of the place-
holder to something more meaningful, such as cphCorpMaster, as in the following
code:

<asp:contentplaceholder id="cphCorpMaster" runat="server">
</asp:contentplaceholder>

The placeholder will be filled by the contents of the child page, which in turn will be
surrounded by whatever else you place on the Master Page. Within the master page,
you may add anything you like surrounding the <asp:contentplaceholder>. For
example, you might add a logo at the top of the page and a copyright notice in the
footer. Perhaps you may want navigation controls to appear consistently positioned
along the side of your pages. You can even add other content place holders, giving
each a unique ID.

For this example, place an <h1> header on the page above the ContentPlaceHolder,
and an HTML table below as a footer. The Source view should look something like
Example 6-6. Add the highlighted code to your page.

Figure 6-6. You add a master page from the Website ➝ Add New Item dialog. Be sure to check the
“Place code in separate file” checkbox.

184 | Chapter 6: Style Sheets, Master Pages, and Navigation

Switching to Design view, the master page will look something like that shown in
Figure 6-7.

Adding Content Pages
The pages you’ll add that will use this master page will put all of their content into
the ContentPlaceHolder defined in the master page. When combined, the two create
a child page.

You can put more than one ContentPlaceHolder control on a master
page (each has its own ID). This gives you tremendous flexibility in
laying out your pages, though experience shows that the majority of
sites actually use only a single contentPlaceHolder per Master Page.

For this example, you’ll add two new .aspx pages, Home.aspx and SecondPage.aspx.
There are two ways to do this.

One way is to click on the Website ➝ Add Content Page menu item. However, this
will produce a page with a default name, which you will almost certainly want to
change, which is more of a nuisance than it is worth.

Example 6-6. CorpMasterPage.master

<%@ Master Language="VB" CodeFile="CorpMasterPage.master.vb"
 Inherits="CorpMasterPage" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" >
<head runat="server">
 <title>Untitled Page</title>
</head>
<body>
 <form id="form1" runat="server">
 <div>
 <h1>AdventureWorks Corp.</h1>
 <asp:contentplaceholder id="cphCorpMaster" runat="server">
 </asp:contentplaceholder>

 <hr />
 <table>
 <tr>
 <td width="50%" align="left">Learning ASP.NET</td>
 <td width="50%" align="right"> ©Copyright 2007</td>
 </tr>
 </table>
 </div>
 </form>
</body>
</html>

Master Pages | 185

The better way is to click on Website ➝ Add New Item…, then add a “normal” Web
Form. Call the new page Home.aspx, and be sure to check both the “Select master
page” and “Place code in separate file” checkboxes, as indicated in Figure 6-8.

When you click the Add button, the Select a Master Page dialog will open. Choose
CorpMasterPage.master (the only master page available at this point), and click OK.

Switch to Design view.

Your new Home.aspx page will be shown within the master page. The Content box
will allow you to add any content you like, including controls, text, and so forth, but
the contents of the master page will be inaccessible.

Add some text and format it as HTML Heading 1 using the Block Format drop-down
menu, as indicated in Figure 6-9.

The Design view allows you to see how your new page will look when it is combined
with the master page at runtime.

Figure 6-7. This is what your Master page looks like in Design view. The heading at the top and the
footer at the bottom will be applied to all your child pages. The content from your child pages will
appear in the placeholder.

Master
Content

186 | Chapter 6: Style Sheets, Master Pages, and Navigation

The terminology can get a bit confusing, so let’s clarify. A master page
has an empty ContentPlaceHolder control.

You create a separate file called a child page. A child page is a nor-
mal .aspx file, with a Page directive but minus the <html>, <form>,
<head>, and <body> tags. Typically, you’ll create many child pages for
each master.

The contents of each child page are displayed as if they were inserted
into the ContentPlaceHolder control. In effect, the Master Page is
“wrapped around” the child page, allowing all the child pages to share
the contents of the master page.

Create the next page, SecondPage.aspx, using the same Master page. Using the Mas-
ter Page ensures that the look and feel of the two pages will be identical.

Take a quick look at the markup generated for the second page:

<%@ Page Language="VB"
MasterPageFile="~/CorpMasterPage.master"

 AutoEventWireup="false"
 CodeFile="SecondPage.aspx.vb"
 Inherits="SecondPage"
 title="Untitled Page" %>
<asp:Content ID="Content1" ContentPlaceHolderID="cphCorpMaster" Runat="Server">
</asp:Content>

Figure 6-8. The easiest way to add a content page is by adding a new Web Form, and making sure
to check the “Place code in separate file” and “Select master page” checkboxes.

Master Pages | 187

The Page directive contains a reference to the second page’s master page file, as well
as some other information necessary to the page. An ASP.NET Content control was
added for you automatically.

You can put some simple text in the Content control and then run the two pages, as
shown in Figure 6-10.

This example does not provide any means of navigating from page to
page. In order to see these pages, right-click on the page in the Solu-
tion Explorer and click on View in Browser. Later in this chapter, we
will look at ways to navigate from page to page within a web site.

Using Nested Master Pages
You may want certain stable elements to appear throughout the entire web site,
while other elements should be shared only within a specific part of your applica-
tion. For example, you might have a company-wide header, but need division-
specific elements as well. ASP.NET 2.0 lets you create nested master pages. Any
given web page can be combined with a nested master page or with the original mas-
ter, whichever makes more sense for that individual page.

Figure 6-9. When you create a child page, you add content within the placeholder you created
before. The contents of the master page are there for you to view, but they’re grayed out. In this
case, use the Block Format drop-down menu to add some text and format it as a Heading 1.

188 | Chapter 6: Style Sheets, Master Pages, and Navigation

In Visual Studio 2005 nested master pages do not display properly.
This is fixed in Visual Studio 2008.

Copy the previous example, MasterPages, to a new application, NestedMasterPages.

Add a new master page to the web site, called SalesMasterPage.master. As shown
back in Figure 6-6, be sure to check the “Place code in separate file” checkbox.

Looking at the Source view, the IDE puts the following boilerplate markup code in
SalesMasterPage.master:

<%@ Master Language="VB" CodeFile="SalesMasterPage.master.vb"
 Inherits="SalesMasterPage" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

Figure 6-10. This is what your child pages look like when you run the application. As you can see,
the header and footer from the master page appear in both.

Master Pages | 189

<html xmlns="http://www.w3.org/1999/xhtml" >
<head runat="server">
 <title>Untitled Page</title>
</head>
<body>
 <form id="form1" runat="server">
 <div>
 <asp:contentplaceholder id="ContentPlaceHolder1" runat="server">
 </asp:contentplaceholder>
 </div>
 </form>
</body>
</html>

In order to make this a nested master page, delete all of this except for the Master
directive. Then add the highlighted code shown in Example 6-7.

The Master directive has an additional attribute, MasterPageFile, which points to its
master page. This is how ASP.NET knows that this is a nested master page. In this
way, master pages can be nested as deep as necessary.

This master page for the Sales department has an ASP.NET Content control, called
SalesMasterContent, which contains the content to display on all the Sales pages. In
this example, that content consists of an HTML table for layout, along with some
additional markup.

Example 6-7. SalesMasterPage.master

<%@ Master Language="VB" CodeFile="SalesMasterPage.master.vb"
 MasterPageFile="~/CorpMasterPage.master"
 Inherits="SalesMasterPage" %>

<asp:Content runat="server" ID="SalesMasterContent"
 ContentPlaceHolderID="cphCorpMaster">
 <table>
 <tr>
 <td>
 <h3>Sales Department Master Page</h3>
 Put information here to display on all the Sales pages.

 </td>
 </tr>
 <tr>
 <td>
 <asp:ContentPlaceHolder runat="server" ID="cphSalesContent">
 Default content for Sales
 </asp:ContentPlaceHolder>
 </td>
 </tr>
 </table>
</asp:Content>

190 | Chapter 6: Style Sheets, Master Pages, and Navigation

Like all Content controls, it has a ContentPlaceHolderID attribute that specifies which
ContentPlaceHolder control on its master page it will populate—in this case,
cphCorpMaster on the CorpMasterPage.master master page.

The markup also includes a ContentPlaceHolder control called cphSalesContent.
Child pages that use this nested master page will put their content inside this
ContentPlaceHolder.

Unfortunately, you cannot use the designer to examine nested pages but you can see
the effect once you create a web page that uses this nested master page.

To see the nested master page in action, add two new pages to the web site. Call
them Sales_Orders.aspx and Sales_Stores.aspx. For each, check the “Select master
page” checkbox shown in Figure 6-8. Now, when the Select a Master Page dialog
comes up, you have two master pages to choose from. Select SalesMasterPage.master
and click OK, as shown in Figure 6-11.

Add some content to each page to distinguish it. The markup for Sales_Orders.aspx
is shown in Example 6-8.

Figure 6-11. When your site uses nested master pages, you have a choice whenever you add a new
page.

Example 6-8. Sales_Orders.aspx

<%@ Page Language="VB" MasterPageFile="~/SalesMasterPage.master"
 AutoEventWireup="false" CodeFile="Sales_Orders.aspx.vb"
 Inherits="Sales_Orders" title="Untitled Page" %>

Master Pages | 191

The results for both pages are shown in Figure 6-12.

Changing the Master Page at Runtime
You may decide that in response to certain events, you’d like to reach up into the mas-
ter page (from a child page) and change its presentation. To do so, you need to add a
public property in the master page that can be accessed by any of the child pages.

<asp:Content ID="Content1" ContentPlaceHolderID="cphSalesContent"
 Runat="Server">
 <h3>Orders</h3>
 Display Orders information here.
</asp:Content>

Figure 6-12. This is what your nested child pages look like when you run the application. You can
see both the AdventureWorks master page, and the sales department master page, with the child
content inside.

Example 6-8. Sales_Orders.aspx (continued)

192 | Chapter 6: Style Sheets, Master Pages, and Navigation

To see how this is done, copy the previous example MasterPages to a new web site
called ChangingTheMasterPage.

In Source view, open the master page, CorpMasterPage.master. From the Standard
section of the Toolbox, drag a Label control onto the page between the opening <h1>
heading and the existing ContentPlaceHolder control. Change the ID of the Label to
lblMessage and remove the Text property. Add an HTML line break and a horizontal
rule (<hr />) while you are at it. The Source view of the master page markup will look
like Example 6-9, with the new Label control and the additional HTML formatting
highlighted.

If you run the web site now, this label will not be visible on any of the child pages
because there is no Text property to it.

Open the code-behind for the master page by right-clicking on CorpMasterPage.
master in the Solution Explorer and selecting View Code. Type in the code high-
lighted in Example 6-10 to implement the public property.

Example 6-9. CorpMasterPage.master withLabel control added

<%@ Master Language="VB" CodeFile="CorpMasterPage.master.vb"
 Inherits="CorpMasterPage" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/
xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" >
<head runat="server">
 <title>Untitled Page</title>
</head>
<body>
 <form id="form1" runat="server">
 <div>
 <h1>AdventureWorks Corp.</h1>
 <asp:Label ID="lblMessage" runat="server" ></asp:Label>

 <hr />
 <asp:contentplaceholder id="cphCorpMaster" runat="server">
 </asp:contentplaceholder>

 <hr />
 <table>
 <tr>
 <td width="50%" align="left">Learning ASP.NET</td>
 <td width="50%" align="right">©Copyright 2007</td>
 </tr>
 </table>
 </div>
 </form>
</body>
</html>

Master Pages | 193

Notice how IntelliSense helps you complete the code for the property.

Before a child page can use a public property of the master page, it needs to be told
the name of the class, or type, that contains the master page. This is done with
another directive at the top of the markup of the page. You have already seen Page

Example 6-10. CorpMasterPage.master with public property

Partial Class CorpMasterPage
 Inherits System.Web.UI.MasterPage

Private lbl As Label
Public Property MessageLabel() As Label
 Get
 Return lblMessage
 End Get
 Set(ByVal value As Label)
 lbl = value
 End Set
End Property

End Class

— V B C H E AT S H E E T —
Public and Private Properties

You’ve seen lots of properties throughout this book. For example, most controls have
a Text property. You have also seen the use of local variables in the classes defined in
the code-behind files. The declaration for properties and variables include a keyword
known as the access modifier, which specifies what parts of the program can see that
property or variable. The two most common access modifiers are public and private.

If a class member is declared public, then any part of the program that refers to that
class can see and use members contained within it (property, variable, or method). On
the other hand, if a class member is declared private, then only the code within that
class itself can use that member.

To put this into relevant terms, in Example 6-10 the variable lbl is declared as private.
Code within the CorpMasterPage class can refer to that variable, but code outside that
class cannot. However, the property MessageLabel is declared public. Code outside the
class can refer to that property by referring to an instance of the class and the property
using dot notation, as will be demonstrated below.

If a member is public, then it will be displayed by IntelliSense where appropriate. If it
is private, IntelliSense will never display it.

If you do not declare an access modifier, the default is public, but it is always good
practice to explicitly declare it, even if public is what you intend.

194 | Chapter 6: Style Sheets, Master Pages, and Navigation

directives at the top of normal .aspx pages, as well as the Master directive at the top
of the master pages. Now add following MasterType directive to the top of
SecondPage.aspx, after the existing Page directive and before any page content:

<%@ MasterType TypeName="CorpMasterPage" %>

If you look at the code-behind for the master page CorpMasterPage.master, you will
see that the name of the class is CorpMasterPage. This code, shown in the following
snippet, is generated for you automatically by the IDE.

Partial Class CorpMasterPage
 Inherits System.Web.UI.MasterPage

Now that the child page has a reference to the class of the master page, it can be
referred to in code. To see this, switch SecondPage.aspx to Design view. Drag a But-
ton from the Standard section of the Toolbox into the Content section of the page.
Change the ID of the Button to btnMessage and its Text property to Message Master.
Figure 6-13 shows the page in Design view.

Figure 6-13. You’re adding a button to SecondPage.aspx that you’re going to use to send a message
to the master page.

Master Pages | 195

Double-click on the button to create an event handler for the Click event in the code-
behind. Enter the highlighted code from Example 6-11 to this event handler to
change the message label on the master page when the button is clicked.

When SecondPage.aspx.vb is run and the button is clicked, it will look similar to
Figure 6-14.

Example 6-11. SecondPage.aspx.vb

Partial Class SecondPage
 Inherits System.Web.UI.Page

Protected Sub btnMessage_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) _
 Handles btnMessage.Click
 Me.Master.MessageLabel.Text = "Button on SecondPage pushed."
End Sub
End Class

Figure 6-14. When you click the button on Second page, the message is sent to the master page and
displayed.

196 | Chapter 6: Style Sheets, Master Pages, and Navigation

Navigation
Modern commercial web sites can be surprisingly complex, often consisting of doz-
ens, even hundreds of pages. Users will have a more satisfying experience if you pro-
vide navigational hints and menus to help them avoid “getting lost,” and to enable
them to conveniently find all the features of the site.

The ASP.NET toolset includes a number of controls that facilitate this assistance.
There are controls for creating both “bread crumbs” (how did I get to this page?) and
site maps (how do I find that other page?).

Most of the time you will want these features to be present on every page, and thus
master pages are a great asset. If you change the site map or the control, you only
need to update the master and all the other pages are “updated” automatically.

Buttons and HyperLinks
The simplest form of navigation is through the use of Buttons, LinkButtons, and
Hyperlinks. All three will take the user to a different page. Superficially, LinkButtons
and Hyperlinks look the same, while buttons look different (see Figure 6-15). Under
the covers, however, LinkButtons and Buttons have much more in common, while
Hyperlinks are very different.

Let’s clarify. When you click a Hyperlink, you are taken directly to the new page. The
first page does not post back to the server. You are immediately transferred to the
new page—do not pass Go, do not collect $200.

With a LinkButton (which looks like a Hyperlink) or a Button (which looks like a but-
ton), however, the page is posted back, and there is an opportunity for you, the
developer, to run an event handler before control is handed over to the new page.

— V B C H E AT S H E E T —
The Me Object

So far, your event handlers have always affected the properties of other controls on the
same page. In this case, however, you want to change the property of a control on the
master page. SecondPage.aspx.vb doesn’t know where that control is. Fortunately,
every page does know its own master. When you want a class to call a method on itself,
you use the Me keyword. Me, as you might expect, refers to the class that’s calling the
method. In this case, you want to access the master page of SecondPage.aspx.vb, so you
do that with a reference to Me.Master. From there, it’s easy to access the MessageLabel.
Text property on the master page.

Navigation | 197

Hyperlinks are faster for the user (and simpler for the developer), but they do not give
you the opportunity to run code before leaving the page, which is the trade off you’ll
have to make each time you decide between a Hyperlink and one of the alternatives.

To see how buttons and links can be used for navigation, copy the example from ear-
lier in this chapter, MasterPages, to a new web site called ButtonNavigation.

Open Home.aspx in Design view. Drag a Button control onto the page below the
header. Change the Text property of the Button to Page 2. It will look something like
Figure 6-16.

As previously mentioned, you need to add custom code to make the navigation hap-
pen. You’ll need to provide some code to handle the Click event, so in Design view,
double-click the button and then enter the highlighted lines of code shown in
Example 6-12.

Figure 6-15. A Button control looks like you would expect a button to look, and ditto for the
HyperLink control.

Example 6-12. Home.aspx.vb showing theButton Click event handler

Partial Class Home
 Inherits System.Web.UI.Page

Protected Sub Button1_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Button1.Click
 ' do something here
 Response.Redirect("SecondPage.aspx")
End Sub
End Class

198 | Chapter 6: Style Sheets, Master Pages, and Navigation

Before the new page is invoked, you can run an event handler. You might do so, for
example, to retrieve the status of other controls on the page, interact with a data-
base, perform computations or, most commonly, to stash a value in Session State
that will be retrieved by the new page.

The Button’s Click event handler is not the only place where your
code is executed during postbacks. You can place code in event han-
dlers for any number of events. By far, the most common is Page Load,
where it is routine to place code to process the page. Page Load and
other life cycle issues are covered in Chapter 7.

The actual navigation is accomplished with the Redirect method of the HttpResponse
class. It is the programmatic equivalent of a hyperlink, immediately transferring to
the new page without first posting back to the server. The argument to the method is
a string representing the URL of the target page.

The URL can either be relative (as in this example) or absolute. In this example, it
refers to a web page in the same directory as the current page. An absolute URL
would be completely qualified, irrespective of the current location, such as http://
LibertyAssociates.com/Samples/SecondPage.aspx.

Figure 6-16. You’ve placed a navigation button on the home page, which will help users find where
they’re going.

http://LibertyAssociates
http://LibertyAssociates

Navigation | 199

Run the page now to see how it works. Clicking on the button posts the page back to
the server. If there were a method called Page_Load to handle the Page Load event, it
would be executed. Then the code in the Button Click event handler from
Example 6-12 would run. The last line in that method would be the Response.
Redirect to perform the navigation.

The main attraction to using buttons and links for navigation is that they are very
simple and direct. The big problem is that it can be tedious to implement, since you
must place every button or link on every page, specify the URL, and handle the Click
event for each (for Buttons and LinkButtons). As a case in point, this example so far
allows you to navigate from the Home page to the Second page, but not back (with-
out using the browser’s Back button). For a web site with many pages and routes,
this approach quickly breaks down.

At any rate, add a HyperLink control to SecondPage.aspx to allow easy navigation
back to the Home page. Go to SecondPage.aspx in Design view, hit the Enter key a
few times at the end of the line of text already there then drag a HyperLink control on
to the page. In the Properties window, set the Text property to Home Page, the
ForeColor property to Blue, and the NavigateUrl property to Home.aspx. Figure 6-17
shows the Home page link in Design view.

Figure 6-17. A HyperLink in Design view showing the properties set to give it the blue look and a
target page to navigate to.

200 | Chapter 6: Style Sheets, Master Pages, and Navigation

Now if you run the page, there will be hyperlink on the second page to take you back
to the Home page. In this example, they behave identically, but if you needed cus-
tom code to execute on SecondPage.aspx, that would not happen with the HyperLink.

Menus and Bread Crumbs
You’ve probably seen menus and bread crumbs for navigation on many commercial
sites. Menus are familiar from the earliest windowing environments; they offer a set
of choices for navigation (they can be pull-down or pop-up selections) and bread
crumbs take their name from Hansel and Gretel, who left a trail behind them so they
could find their way home. In ASP.NET, bread crumbs typically consist of a set of
links back through the page hierarchy, making it easy for you to reverse course and
take different forks in what otherwise would be a confusing tree of alternative pages.

To see menus and bread crumbs at work, you’ll need a web site with a few pages to
simulate a complex web site of hundreds of web pages (feel free to create hundreds
of web pages if you like, we’ll wait). Figure 6-18 shows how the finished web site will
appear.

To build this web site, you will use a single master page, several normal web pages,
and a site map to provide information for the menu and the bread crumbs. Later in
the chapter you will see how to spiff up the appearance of the menu and the bread
crumbs.

About Bread Crumbs and Hansel and Gretel
Hansel and Gretel is a short story by the Brothers Grimm (who came by their last name
honestly, to judge by the brutality of many of their stories). Written in the late 18th
century, the story tells how starving children are abandoned in the forest by their evil
stepmother (isn’t it always?). They gather white pebbles to find their way home, but
she repeats her crime of abandonment and this time the kids have only bread (it is not
explained where all the pebbles have gone).

They leave bread crumbs as a trail home, but the forest animals eat them (the bread
crumbs, not the kids), and now hopelessly lost, the kids are left to the mercy of a witch
who locks Hansel in a cage and makes Gretel her servant, while she fattens them both
as potential dinner.

It is from this delightful tale of child abuse and cannibalism that we derive the technical
term “bread crumbs” for navigation within ASP.NET

—Source: Wikipedia article “Hansel and Gretel,” as of May 30, 2007

Navigation | 201

First you will create the web site with the master page, minus the navigation con-
trols, and all the content pages. Then you will add the site map and the navigation
controls.

Create a new web site called WebSiteNavigation. Delete Default.aspx by clicking on
it in the Solution Explorer and pressing the Delete key. Confirm the deletion by
clicking OK.

Add a master page, exactly as you did previously in this chapter. Click on Website ➝

Add New Item…. In the Add New Item dialog box, select Master Page. You can
retain the default file name of MasterPage.master. Be sure to select the “Place code in
separate file” checkbox (see Figure 6-6).

When the master page opens in Source view, the only markup inside the <div> ele-
ments is the default ContentPlaceHolder control. Replace that with the highlighted
code shown in Example 6-13. This is nearly identical to the CorpMasterPage.master
from the example shown earlier in the chapter, except the ContentPlaceHolder con-
trol is placed inside an HTML table for layout control. Notice that the first cell in the
only row in that table is empty at the moment. You will put the menu in that cell
shortly.

Figure 6-18. When you’ve completed the web site with menus and bread crumbs, it will look like
this.

202 | Chapter 6: Style Sheets, Master Pages, and Navigation

As you can see from the menu in Figure 6-18, there are six pages in this web site.
Add all six of those pages to the web site now. In all cases, be sure to check the
“Select master page” checkbox (see Figure 6-8), and to select MasterPage.master as
the master page (the only choice). The names of the pages to create are:

• Home.aspx

• HR.aspx

• Production.aspx

• Sales.aspx

• Sales_Orders.aspx

• Sales_Stores.aspx

Example 6-13. MasterPage.master before adding navigation controls

<%@ Master Language="VB" CodeFile="MasterPage.master.vb" Inherits="MasterPage" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" >
<head runat="server">
 <title>Untitled Page</title>
</head>
<body>
 <form id="form1" runat="server">
 <div>
 <h1>AdventureWorks Corp.</h1>

 <hr />
 <table width="100%">
 <tr>
 <td>
 </td>
 <td>
 <asp:contentplaceholder id="cphCorpMaster" runat="server">
 </asp:contentplaceholder>
 </td>
 </tr>
 </table>

 <hr />
 <table>
 <tr>
 <td width="50%" align="left">Learning ASP.NET</td>
 <td width="50%" align="right">©Copyright 2007</td>
 </tr>
 </table>
 </div>
 </form>
</body>
</html>

Navigation | 203

To keep things simple, add only an <h1> heading to the Content area of each page
identifying the name of the page.

You are now ready to prepare the site map and add the navigation controls.

Site Maps
Site maps are used as a data source for navigation controls such TreeViews, Menus,
and SiteMapPaths (which provide bread crumbs). Used in conjunction with master
pages, these allow for easy and universal navigation without having to place naviga-
tion controls on every page of the web site.

Add a site map to the current web site by clicking on Website ➝ Add New Item….
When the Add New Item dialog appears, select Site Map and accept the default
name, Web.sitemap, as shown in Figure 6-19.

When you click Add, the file Web.sitemap is added to your web site, and the skele-
ton of a site map is provided for you, as shown in Example 6-14.

Figure 6-19. To create a new Site Map, select Website ➝ Add New Item, and then choose the Site
Map.

204 | Chapter 6: Style Sheets, Master Pages, and Navigation

The url attribute specifies the page this menu item will link to. The title attribute
defines the text that is displayed as the link, and the description attribute is used in
the tool tip.

Neither VWD nor VS2005 provide drag-and-drop support for creat-
ing your site map file. You can implement your own SiteMap provider
to automate this process or get the site map from another source (such
as a database) but this is a very advanced topic, beyond the scope of
this book.

Replace the contents of Web.sitemap with the site map XML shown in Example 6-15.

The site map is an XML file, as indicated by the first line in the file. The entire hierar-
chy of the file is contained within a single <sitemap> element that defines the
namespace:

<siteMap xmlns="http://schemas.microsoft.com/AspNet/SiteMap-File-1.0" >

Within the siteMap element is nested exactly one <SiteMapNode> (in this case, Home).
Nested within that first <SiteMapNode>, however, is any number of children
<SiteMapNode> elements. Each <SiteMapNode> element can in turn have any number of
children <SiteMapNode> elements.

Example 6-14. Web.sitemap skeleton

<?xml version="1.0" encoding="utf-8" ?>
<siteMap xmlns="http://schemas.microsoft.com/AspNet/SiteMap-File-1.0" >
 <siteMapNode url="" title="" description="">
 <siteMapNode url="" title="" description="" />
 <siteMapNode url="" title="" description="" />
 </siteMapNode>
</siteMap>

Example 6-15. Web.sitemap for WebSiteNavigation example

<?xml version="1.0" encoding="utf-8" ?>
<siteMap xmlns="http://schemas.microsoft.com/AspNet/SiteMap-File-1.0" >
 <siteMapNode url="~/Home.aspx" title="Home" description="Home page">
 <siteMapNode url="~/Sales.aspx" title="Sales" description="Sales" >
 <siteMapNode url="~/Sales_Orders.aspx" title="Orders"
 description="Orders" />
 <siteMapNode url="~/Sales_Stores.aspx" title="Stores"
 description="Stores" />
 </siteMapNode>
 <siteMapNode url="~/Production.aspx" title="Production"
 description="Production" />
 <siteMapNode url="~/HR.aspx" title="Human Resources" description="HR" />
 </siteMapNode>
</siteMap>

Navigation | 205

In Example 6-15, there are three such children: Sales, Production, and Human
Resources. Nested within each of these <SiteMapNode> elements can be more nodes.
For example, Sales contains Orders and Stores. You may nest the nodes as deep as
you wish.

ASP.NET is configured to protect files with the extension .sitemap so
they cannot be seen by a browser.

Once the site map file is in place, you need to identify it to the master page. This is
done by dragging a SiteMapDataSource control from the Data section of the Toolbox
onto the master page. By default, the SiteMapDataSource control will look for and use
the file named Web.sitemap.

It doesn’t matter where you place this SiteMapDataSource control, as long as it is some-
where between the <form> and </form> tags in Source view. The SiteMapDataSource
will be visible in Design view but will not appear when the web site is run.

The Design view should look something like Figure 6-20.

Figure 6-20. Place your SiteMapDataSource control on the master page. It’ll show up in Design
view, but not in any of the pages that use the master page.

206 | Chapter 6: Style Sheets, Master Pages, and Navigation

Using Sitemaps
There are two types of controls that can provide site-map menu capability: a
TreeView control and a Menu control. To see both at work, you’ll first create a
TreeView control, then you will comment that out and add a Menu control.

TreeView

The TreeView provides the familiar hierarchical view of items. One very familiar use
of a TreeView is the Windows Explorer view of folders and subfolders.

Recall when you created the master page for this example there was an empty table
cell in the layout. Switch to Source view, and then, from the Navigation section of
the Toolbox, drag a TreeView control into that empty cell. (You can do this in Design
view, of course, but we find it easier to use Source view when dragging elements into
a cell.)

Switch back to Design view and click on the Smart Tag of the TreeView. Click on the
drop-down next to Choose Data Source and select SiteMapDataSource1, the ID of the
SiteMapDataSource you just placed on the master page, as shown in Figure 6-21.

As soon as you select the data source for the TreeView, it will display the nodes from
the site map file in Design view.

Figure 6-21. Select the data source for the TreeView control from the Smart Tag. In this case, you
just have the one SiteMapDataSource control on the master page.

Navigation | 207

Set Home.aspx as the startup page by right-clicking on it in the Solution Explorer and
selecting “Set As Start Page” from the menu.

Run the web site now and see the TreeView menu in action. Click on any of the menu
items along the left of the web site and observe how it navigates from page to page. If
you click on the Stores menu item, it will look almost exactly like Figure 6-18. The
only difference is the bread crumbs are missing because you have not yet placed that
control on the page.

Menu items that contain subitems of their own, such as Home and Sales, display a
small icon next to them. Clicking on this icon toggles between expanded and col-
lapsed views of these subitems. This structure directly flows from the nesting of
SiteMapNodes in the site map file.

Customizing the look and feel of the TreeView

The TreeView control has many properties, methods, and events, which allow you to
customize the look and feel of the TreeView.

The easiest way to change the appearance of the TreeView is to view the page in
Design view, click the TreeView’s Smart Tag, and then click Auto Format…, as shown
in Figure 6-22.

Figure 6-22. The Auto Format options, found in the Smart Tag of the TreeView, provide a number
of prebuilt formatting options.

208 | Chapter 6: Style Sheets, Master Pages, and Navigation

Most of the TreeView’s properties have to do with the styles used for the various
nodes. There are properties for general nodes, parent nodes, child (leaf) nodes, root
nodes, selected nodes, and nodes when the mouse is hovering over them. For each of
these node types you can set font attributes, CSS class, fore- and back-colors, spac-
ing and padding, borders, and so on.

Replacing the TreeView with a menu control

Open MasterPage.master in Source view and locate the TreeView control. Comment
it out and replace it with a Menu control:

 <!-- <asp:TreeView ID="TreeView1" runat="server"
 DataSourceID="SiteMapDataSource1"
 /> -->
 <asp:Menu ID="Menu1" runat="server" DataSourceID="SiteMapDataSource1" />

Run the application. Presto! A menu control for navigation. Hover over Home (open-
ing the next level) and then hover over Sales (opening the third level). Finally, click
Stores. The results should look like Figure 6-23.

Figure 6-23. You’ve replaced the TreeView with a menu control, which does all the work for you.
When you hover over Stores in the Menu Control, you can navigate to that page.

Navigation | 209

If the menus start to eat into your content space, you can set their Orientation prop-
erty to Horizontal (the default is Vertical) and rearrange your layout table to make
room for them.

Accessing site map nodes programmatically

There are times when you may want access to the current node and its subnodes so
you can manipulate them programmatically. For example, you may want to log the
user’s current menu choice to a log file. You can add code to a page to get that infor-
mation. In the next example, you will display the names of the current node in the
Sales.aspx page, and its subnodes. First, remove the menu control you added in the
previous example, and uncomment the TreeView. Add the highlighted code in
Example 6-16 inside the Content tags in Sales.aspx, including the <hr/> to provide a
bit of a visual break.

Adjusting the Root Node
If you don’t like the way the root node sticks out, you can adjust it. Set the
ShowStartingNode property of the SiteMapDataSource control to False, then edit the
Web.sitemap file so that the original root node is now one level in, and an empty root
node takes its place, as in the following:

<?xml version="1.0" encoding="utf-8" ?>
<siteMap xmlns="http://schemas.microsoft.com/
AspNet/SiteMap-File-1.0" >
 <siteMapNode title="Root" >
 <siteMapNode url="~/Home.aspx" title="Home"
 description="Home page">
 <siteMapNode url="~/Sales.aspx" title="Sales"
 description="Sales" >
 <siteMapNode url="~/Sales_Orders.aspx"
 title="Orders"
 description="Orders" />
 <siteMapNode url="~/Sales_Stores.aspx"
 title="Stores"
 description="Stores" />
 </siteMapNode>
 <siteMapNode url="~/Production.aspx"
 title="Production"
 description="Production" />
 <siteMapNode url="~/HR.aspx"
 title="Human Resources"
 description="HR" />
 </siteMapNode>
</siteMap>

The only attribute actually required of the root node is the Title.

210 | Chapter 6: Style Sheets, Master Pages, and Navigation

You have added two labels, lblCurrentNode and lblChildNodes, but they have noth-
ing to display yet. For that, you’ll need an event handler.

Open the code-behind for this page (click the plus next to Sales.aspx in Solution
Explorer then double-click Sales.aspx.vb that appears below it). Add the highlighted
code in Example 6-17 to create an event handler for the Page Load event. You can
have the IDE create the skeleton of the event handler for you by selecting (Page
Events) from the drop-down at the top left of the editing window and selecting Load
from the drop-down menu at the top right of the editing window.

Example 6-16. Sales.aspx with addedLabel controls for display of the current and child nodes

<%@ Page Language="VB" MasterPageFile="~/MasterPage.master" AutoEventWireup="false"
 CodeFile="Sales.aspx.vb" Inherits="Sales" title="Untitled Page" %>
<asp:Content ID="Content1" ContentPlaceHolderID="cphCorpMaster" Runat="Server">
 <h1>Sales</h1>
 <hr />
 <table>
 <tr>
 <td>
 Current Node:
 </td>
 <td>
 <asp:Label ID="lblCurrentNode" runat="server" />
 </td>
 </tr>
 <tr>
 <td>
 Child Nodes:
 </td>
 <td>
 <asp:Label ID="lblChildNodes" runat="server" />
 </td>
 </tr>
 </table>
</asp:Content>

Example 6-17. Sales.aspx.vb showing thePage_Load event handler

Partial Class Sales
 Inherits System.Web.UI.Page

 Protected Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 Try
 Me.lblCurrentNode.Text = SiteMap.CurrentNode.Title

 If SiteMap.CurrentNode.HasChildNodes Then
 For Each node As SiteMapNode In SiteMap.CurrentNode.ChildNodes
 Me.lblChildNodes.Text += node.Title + "
"
 Next
 End If

Navigation | 211

In this code, you are setting the Text property of lblCurrentNode to reflect the Title
property of the SiteMap’s CurrentNode. The SiteMap is an in-memory representation of
a site’s navigational structure. The SiteMap object itself is created by the site map
provider (in this case, by the SiteMapDataSource).

 Catch exNull As System.NullReferenceException
 Me.lblCurrentNode.Text = "The XML file is not in the site map!"
 Catch ex As System.Exception
 Me.lblCurrentNode.Text = "Exception! " + ex.Message
 End Try
 End Sub

End Class

— V B C H E AT S H E E T —
For Each

As you’ve seen throughout this book, lots of objects contain collections of other
objects. Frequently, you’ll want to take some action on every object in a collection, but
you won’t know how many there are. That’s where the For Each loop comes in.

In this case, the SiteMap has a collection called ChildNodes, which is a collection of
SiteMapNode objects. You want to grab each node in order, extract the Title property,
and add it to a label. Here’s how the For Each loop breaks down:

For Each node As SiteMapNode In
 SiteMap.CurrentNode.ChildNodes

You start with the For Each statement, and then you define a variable, node, which is
of type SiteMapNode. Like all variables, node is a placeholder; in this case, you’re using
node to indicate “the node I’m looking at right now.” You use As to indicate that node
is of the type SideMapNode, because that’s the kind of objects that ChildNodes contains.

Then you use In to indicate where the loop should find the SiteMapNode objects to use,
which in this case is inside SiteMap.CurrentNode.ChildNodes. When the loop starts, the
first node from the ChildNodes collection gets loaded into node. You take an action on
node, in this case extracting the title and adding it to the label:

 Me.lblChildNodes.Text += node.Title + "
"

You could take more than one action, of course, assuming you want that action to be
repeated multiple times.

The loop ends with Next. When the loop reaches that point, it dumps the current con-
tent of node, and repeats the loop on the next SiteMapNode object from ChildNodes.
When the loop has gone through each item in the collection, it stops, and execution of
the code continues from after the loop.

Example 6-17. Sales.aspx.vb showing thePage_Load event handler (continued)

212 | Chapter 6: Style Sheets, Master Pages, and Navigation

The CurrentNode property returns an object of type SiteMapNode, and the Title prop-
erty of that SiteMapNode returns the title of that SiteMapNode.

The SiteMapNode’s property HasChildNodes returns a Boolean, which is True if there
are subnodes to the SiteMapNode. If this is the case, you can iterate through the
SiteMapNodeCollection returned by the ChildNodes property. If there are no child
nodes, this code does nothing.

When you view this page, the labels display the name of the current node and all its
child nodes, as shown in Figure 6-24.

Bread Crumbs
The final thing to add to our example is bread crumbs. Recall from the earlier discus-
sion, bread crumbs are an indicator of where you are in the page hierarchy and how
you got there. This is done using the ASP.NET SiteMapPath control.

To see this, go back to MasterPage.master in Design view. From the Navigation
section of the Toolbox, drag a SiteMapPath control onto the page between the Adven-
tureWorks heading and the horizontal rule, as shown in Figure 6-25.

That’s all there is to it!

Run the site and you’ll see how the breadcrumbs tell you where you are at all times.

— V B C H E AT S H E E T —
Catching Errors

In Example 6-17, you can see the code that sets the text of your labels is contained
within a block named Try. This is how VB accounts for unexpected errors. If an error
occurs inside the Try block (known as throwing an exception), you can take action spe-
cific to the error by putting that error-handling code in a Catch block. In this case, there
are two Catch blocks: the first one occurs if an error is thrown of type System.
NullReferenceException, meaning that the page doesn’t have a valid reference to the
XML file that stores the site map. If that happens, lblCurrentNode outputs an error
message specific to the problem. The second Catch block is a general case, specific to
any error of type System.Exception. In this case, lblCurrentNode displays a general error
message, and adds the Message property of the captured error, which is automatically
generated by ASP.NET. Neither message fixes the problem, but at least the user will
know what happened if an exception is thrown.

Notice that the Try block ends with an End Try statement, which comes after all the
Catch blocks.

Navigation | 213

It is uncommon in production applications to provide both a TreeView
and bread crumbs on the same page.

Similar to the TreeView, the SiteMapPath provides many ways to customize the look
and feel. Click on the Auto Format item in the Smart Tag shown in Figure 6-25 to
see a number of predefined formats. Alternatively, the Properties window provides a
similar, if smaller, set of properties, as it did for the TreeView.

In the previous example, the bread crumbs separated the various pages with the
greater-than symbol (>). This is easy to change with the PathSeparator property. For
example, to use an arrow as the separator symbol, edit the SiteMapPath control in
Source view to look like the following:

<asp:SiteMapPath ID="SiteMapPath1" runat="server" PathSeparator="->" />

The result is shown in Figure 6-26. Compare this with the original bread crumbs
shown in Figure 6-18.

Figure 6-24. You’ve added the code that allows you to access the current node, and the child nodes,
and list them for the user to see.

214 | Chapter 6: Style Sheets, Master Pages, and Navigation

Summary
• Style sheets hold presentation information for an entire site in a separate file to

ensure a consistent look throughout the site.

• A style specifies how a specific element is rendered visually in the browser.

• Style rules are applied in a hierarchical manner, such that more specific styles
take precedence over general styles.

• A style property is defined by a property name, followed by a colon, followed by
a value. Style properties are separated by semicolons.

• Styles can be applied inline or at the document level, but these methods are
error-prone and difficult to maintain. The most effective way to apply styles is
with an external file called a style sheet.

• A master page is a template that holds content that you want to appear on all
pages of your site. The master page also contains content placeholder areas
where you can insert the content of each child page.

• To create a master page, select Website ➝ Add New Item, and choose Master
Page from the Add New Item dialog.

Figure 6-25. Adding navigation with bread crumbs to your site is as simple as placing a
SiteMapPath control in Design view.

Summary | 215

• To add content pages that use your master page, select Website ➝ Add New
Item, select Web Form from the Add New Item dialog, and be sure to check the
“Select master page” checkbox. When you click Add, you’ll be asked to choose
which master page you want to use. Child pages have a Page directive that indi-
cates their master page.

• You can nest one master page inside another. Create a new master page and
delete all the content except for the Master directive. Then insert a MasterPageFile
attribute that points to the primary master page. The new submaster page will
appear inside the master page, with its own content placeholders.

• You cannot view nested master pages in Design mode in VS2005 or VWD.

• You can change the content of the master page at runtime by implementing a
public property on the master page, and adding a MasterType directive to the top
of a child page. Once the child page has the class of the master page, the child
page can programmatically interact with public properties of the master page.

• ASP.NET provides a number of predefined navigation controls that make it sim-
ple to help users move around your site.

Figure 6-26. You can change the PathSeparator proptery of your SiteMapPath control to alter the
look of your bread crumbs; in this case, with an arrow symbol.

216 | Chapter 6: Style Sheets, Master Pages, and Navigation

• You can add simple Button controls that allow users to navigate from the cur-
rent page to the button’s target. The Response.Redirect method transfers the
user to the new page, but it does not post back to the server first.

• The site map is a data source that provides the information you need to imple-
ment a navigation tree, menu, or breadcrumbs on your site. It’s an XML file that
contains a series of nodes, each representing a page in your site. The IDE doesn’t
create this file, although it does provide a skeleton if you select Website ➝ Add
New Item and choose Site Map.

• After you’ve created the site map, you can add a SiteMapDataSource control to
your master page. The SiteMapDataSource control uses the file named Web.
sitemap by default.

• Once you have a SiteMapDataSource in place, you can easily add a TreeView from
the Navigation controls to your site. You set the data source for the TreeView to
point to the SiteMapDataSource, and ASP.NET does the rest for you automati-
cally. You can format the TreeView any way you like, from a set of predefined
formats, or you can specify your own custom format.

• You can use a Menu control in the same way as the TreeView control. Simply add
the Menu control to your page, point its data source to the SiteMapDataSource,
and the IDE does the rest for you. You can change the format of the Menu con-
trol, or change the orientation from horizontal to vertical.

• You can access the nodes in your site map programmatically, using the
CurrentNode and ChildNodes properties.

• Bread crumbs are a tool that indicates the current page, and the preceding pages
in the hierarchy. They’re more concise and compact than a TreeView or a Menu.
To use bread crumbs, simply place a SiteMapPath control on the page with the
SiteMapDataSource. You don’t need to specify the data source; it’s done automat-
ically. You can format the bread crumbs as you see fit.

This chapter is one of the first times in this book that you’ve seen sites that consist of
multiple pages. Obviously, most sites in the real world consist of more than one
page, and here you’ve taken your first steps towards more complex sites. You also
learned in this chapter how you can make controls in child pages that affect the con-
tent of the master page. That’s a great technique, but you’ll notice that any content
you change vanishes as soon as you navigate to another page. If you’re going to have
sites with multiple pages, you’ll need some way of passing data from page to page, or
between postbacks. That’s called preserving state, and you’ll learn several ways of
doing it in the next chapter.

Exercises | 217

B R A I N B U I L D E R

Quiz
1. What’s the most effective way to apply styles on your web page?

2. If a style sheet has rules applying to the text of the whole page, but one specific
paragraph has a different style rule applied, which takes precedence?

3. What command do you use to apply a style sheet to your page, and where do
you place it?

4. What is the purpose of a master page?

5. How many different master pages can you apply to a particular content page?

6. When you are trying to change the content of a master page at runtime, what
does the content page need to affect the master page?

7. What method could you use in a Button Click event handler to navigate to
another page?

8. What file do you need for all the navigation controls to work? How is this file
generated?

9. What control do you use to enable the navigation controls to access the file?

10. What do you have to do to connect the SiteMapPath control to a data source?

Exercises
Exercise 6-1. In this set of exercises, you’ll create a web site for a travel agency called
Ajax Travel. First, create a master page containing all the elements that should appear
on each page of the site, with the company name at the top, and a copyright notice at
the bottom. In addition, Ajax Travel’s portfolio of destinations is divided into two
categories: Sun and Snow. The home page of the site should offer users a choice
between these two categories. Each category should have its own heading, which
appears in addition to the company heading. Also, each page in the “Sun” category
should carry a message at the bottom reading “Ask about our honeymoon specials!”
Each page in the “Snow” category should carry a message at the bottom reading “Ask
about our ski vacation packages!” To keep things simple, create just two content
pages for each category: the Sun category should have one page for Bermuda, and one
for Maui; the Snow category should have one page for Vail, Colorado, and one for St.
Moritz, Switzerland. The Maui page should look like Figure 6-27.

The Vail page should look like Figure 6-28.

Exercise 6-2. Add a control to the Home page of the Ajax Travel site asking the user
to enter his name. Update the master page of the site so that “Hello <name>!” is dis-
played at the top of the page. The page should look like Figure 6-29.

218 | Chapter 6: Style Sheets, Master Pages, and Navigation

Exercise 6-3. Remove the user greeting control from the master page. Implement a
TreeView and a Menu for site navigation, both on the master page. Let users choose
between the two types of navigation control by using a control on the master page,
as shown in Figure 6-30.

Exercise 6-4. Add breadcrumbs to your site on the master page, as shown in
Figure 6-31.

Figure 6-27. Your goal for the “Maui” page of Exercise 6-1.

Figure 6-28. Your goal for the “Vail” page of Exercise 6-1.

Exercises | 219

Figure 6-29. Your goal for Exercise 6-2.

Figure 6-30. Your goal for Exercise 6-3.

220 | Chapter 6: Style Sheets, Master Pages, and Navigation

Figure 6-31. Your goal for Exercise 6-4

221

Chapter 7 CHAPTER 7

State and Life Cycle7

Most of the web sites you have built in this book have been confined to a single page.
In Chapter 6, you learned techniques to provide a single look and feel throughout
the site.

When you created the examples in Chapter 6, you may have noticed that any data
you entered on a page usually didn’t stick around if you went to a different page and
came back, or even if you issued a postback on the page you were on. That’s because
the pages you’ve built up until now haven’t had any way to preserve that kind of
information, called state.

In each chapter up until now, you’ve learned about the different kinds of controls
and how you use them. We’re going to take a slightly different approach in this
chapter, and first taking you behind the scenes so you can understand what the page
actually does when you click the Submit button. Then you’ll find out more about
state, and how to hold onto it. By the time you’ve finished this chapter, you’ll have
built several sites that can retain state, no matter how much the user clicks around.

Page Life Cycle
A user sits at her browser and types in a URL. A web page appears with text, and
images, and buttons, and so forth. She fills in a text box and clicks a button. New
data appears in response. How does this work?

Before we begin, it is important to understand a little bit about the “architecture” of
the World Wide Web. In the applications you’ve developed to this point, you’ve
been able to do everything on one computer. But in order for these exercises to work,
your single computer is standing in for three or four important pieces of the puzzle,
as shown in Figure 7-1.

In the original model of the Web, a browser would send a request for a page, identi-
fied by a Universal Resource Locater (URL), and then some remote server would
return that page. Information would be presented using HTML, a simple markup
language that the browser would display. Pages were imagined to be display-only,

222 | Chapter 7: State and Life Cycle

with interaction limited to clicking on hyperlinks to move from page to page. Each
page was designed to be independent of all the others, and it didn’t matter who was
looking at a given page, or when.

In a traditional desktop application, on the other hand, you assume that a single user
sits down, starts the application, uses it continuously for a while, and then closes the
application. This period of time when the user is interacting with the application is
called a session. If the user enters her name at some point, the application should hold
onto that name for the duration of the session in case it needs to be retrieved at some
later point. No matter where the user goes in the application, that name is assumed to
be the same, and so the application may need to pass that name around to different
methods within the code as needed. The user name, along with any other changes she
makes, is known as the state of the application, and the application needs to preserve
that state for at least the duration of the session, and sometimes between sessions.

Desktop applications were always intended to preserve the application state; web
pages were not. In fact, the Web was consciously and explicitly designed to be
“stateless.” This plan worked just fine for a while, but nowadays, web users expect
web applications to behave like desktop applications, which means they need a way
to preserve state.

To create a session-based interactive application on top of the Web, ASP.NET uses
pages that extend traditional HTML pages. These are stored on the web server and
combine markup and code to produce HTML for the user’s browser.

Some code runs on the server when the page is requested. Some code runs on the
server in response to actions taken by the user (pressing a button, for example).
Some code is embedded in the page and runs in the browser (AJAX and JavaScript
client-side code).

To understand when different bits of code are run, and how the page that is sent to the
browser is assembled, you need to understand the “life cycle” of the ASP.NET page.

When an ASP.NET page is requested from the server, the page is loaded into server
memory, processed, sent to the user, and unloaded from memory. From the begin-
ning of the life cycle to the end, the goal is to render appropriate HTML to the
requesting browser.

Figure 7-1. When you enter a URL in your browser, your request crosses the Internet to the web
server, which may access a database, and then returns the page to your local machine.

Server

Database

Internet

Page Life Cycle | 223

At each step, methods and events are available that allow you to override the default
behavior or add your own programmatic enhancements. The Page class creates a
hierarchical tree of all the controls on the page: the control tree.

To see this, you’ll create a quick web site called LifeCycle. This site will consist of a
single page containing a single Button control. Clicking on the Button will do noth-
ing but cause the page to post back to the server.

In Source view, open Default.aspx, and then drag a Button control onto the page
between the two <div> tags.

Add the Trace attribute to the Page directive at the top of the file and set its value to
true, as shown in Figure 7-2.

We haven’t formally introduced the Trace control, but you need it for this exercise.
You can see the control tree for any page by adding Trace="true" to the Page direc-
tive. We’ll cover tracing in detail in Chapter 8.

Run the page. You will see the single button at the top, followed by a ton of informa-
tion at the bottom. For now, just slide down to the section labeled Control Tree, as
shown in Figure 7-3.

Figure 7-2. The LifeCycle Default page in Source view shows the single control on the page and the
Trace attribute within the Page directive.

224 | Chapter 7: State and Life Cycle

The Page itself is at the root of the tree. All the named controls are included in the
tree, referenced by control ID. In our simple example, there are only two named
controls: form1 and Button1.

Static text, including whitespace, newlines, and HTML tags, are represented in the
tree as LiteralControls. The order of controls in the tree is strictly hierarchical.
Within a given level of the hierarchy, the controls are in the order in which they
appear in the markup file.

Web components, including the Page, go through their entire life cycle every time the
page is loaded. Events fire first on the Page, then recursively on every object in the
control tree.

There are two slightly different sequences in the life cycle: one for the first time a
page is loaded, and a second when the page reloads itself in a postback. The life cycle
is shown schematically in Figure 7-4.

During the first page load, the life cycle consists of the following steps:

1. A request for the page is made from a browser to the web server. The ASP.NET
Framework first determines whether the page already exists in a cache (a section
of memory specifically reserved for recently used items). If so, the page is
retrieved and returned to the browser and we are done. If not, then the actual
page life cycle starts at this point.

2. During the Start phase, the postback mode is determined. If the page was
requested by another page, then it was not a postback. If the page was returned
to the server for processing and redisplay, then it is a postback. The IsPostBack
and PreviousPage properties are set accordingly. The Request and Response
properties of the page are also set.

3. The Page Initialization phase contains two events often handled by your code:
PreInit and Init. If you do not handle these explicitly yourself, ASP.NET will
perform the default behavior on your behalf. During the PreInit event, the tar-
get device is determined before the page is initialized, the master page is set, the

Figure 7-3. The page Trace contains lots of information about the page, but for now, you’re only
interested in the Control Tree section, which shows all the controls on the current page.

Page Life Cycle | 225

Figure 7-4. Schematic of ASP.NET page life cycle. Events are in rectangles, with commonly
handled events in bold rectangles. Areas of functionality are indicated in circles. The dashed round-
cornered rectangles delineate the major phases of the cycle.

Event

Commonly handled
event

Functionality

KEY

Page in cache?
Yes Retrieve

from
cache

Page
request

No

Start Set Request, Response &
IsPostBack properties

Page
initialization PreInit

Init

InitComplete

Load

First load?
No

LoadState ProcessPostData

PreLoad

Load

Validation

First load?
ProcessPostData

(second try) ChangedEvents

PostBackEvents

Perform
control
events

Postback
event

handling

LoadComplete

Rendering
PreRender

PreRenderComplete

SaveState

SaveStateComplete

Render
Create
child

controls
Unload

Create child
controls, apply
view & control

state

Yes

No

Yes

226 | Chapter 7: State and Life Cycle

control tree is built, and the controls are assigned unique IDs, which are made
available to your code. Personalization and themes are loaded and applied to the
page in this step (these are discussed in Chapter 9).

4. PreInit is the first event in the life cycle that can be trapped and handled. That
is, this is the first event that you can write your own code for, to change the
default behavior of initializing the page. During the Init event, control proper-
ties are read or initialized. If this is a postback it is important to realize that any
values stored in view state (described shortly) have not yet been restored to the
controls.

5. During the Load event, all the control properties are set. View state information
is available and controls in the page’s control hierarchy can be accessed. The
load phase is routinely modified in a Page_Load method.

6. During the Validation phase, the Validate method is called on all the Validation
controls on the page. The IsValid property is set for all those controls and for
the page as a whole.

7. During the Rendering phase, personalization, control, and view state is saved.
Each control on the page is called in succession to render itself to the browser,
that is, to compose itself into HTML that is included in the page’s Response
property. It is very common to handle the PreRender event with a Page_PreRender
method, typically when you must take some action based on the final value of
some other control on the page. During the Render event, the HTML is actually
generated and sent to the requesting page, although this event is rarely handled
unless you are developing custom controls.

8. Unload is the last event of the life cycle. It gives you an opportunity to do any
final cleanup, such as close open files and release references to expensive
resources, such as database connections.

During postback, the life cycle is the same as during the first load, except for the
following:

1. During the Load phase, after initialization is complete, the view and control state
is loaded and applied as necessary.

2. After the Validation phase completes, postback data is processed. Control event
handlers are now executed. This is important: Control event handlers, such as a
Button Click, are not called until after the Page Initialization and Load events are
handled. This is important because it is often critical in which order code in the
various event handlers is executed.

You can easily see the order in which events are fired on a page by turning on tracing
for the page as you did above (setting Trace to true in the Page directive). As shown
in Figure 7-5, the Trace Information section of the sample, lists all the page events
along with the number of seconds it took for that event to run, both from the start of
the life cycle and from the previous event.

State | 227

If you click the button to cause a postback, the trace information will include the
additional events indicated in Figure 7-4, including ProcessPostData Second Try,
ChangedEvents, and PostBackEvent. Often when you’re trying to track down why your
page is behaving a certain way or why some of your code does not seem to work as
you would expect, looking at the life cycle behavior can be very illuminating.

State
State, in the case of a web page, is the current value of all the controls and variables,
for the current user, in the current session. The Web is inherently a stateless environ-
ment, which means that each time a page is posted to the server and then sent back to
the browser, the page is created again from scratch. Unless the state of all the controls
is explicitly preserved before the page is posted, the state is lost and all the controls
will be created with default values. One of the great strengths of ASP.NET is that it
automatically maintains state for server controls—both HTML and ASP.NET—so you
do not have to write any code to accomplish this. This section will explore how this is
done and how you can make use of the ASP.NET state management capabilities.

ASP.NET manages four types of state:

Control state
Used to provide features such as paging and sorting of GridView controls.
Control state cannot be modified, accessed directly, or disabled.

View state
The state of all the controls on the page. View state only lasts for that one page
display, and is updated every time the page is redrawn. It can be disabled for
specific controls, the page, or the entire web site.

Figure 7-5. The Trace Information section of the page Trace shows all the page events.

228 | Chapter 7: State and Life Cycle

Session state
Data specifically saved across page posts, for use by all the pages in a web
application.

Application state
Data available to all the users of a web application, even across multiple
sessions.

Table 7-1 compares the kinds of state management (other than Control state, which
is not accessible to the developer).

View State
The view state is the state of the page and all its controls. The view state is automati-
cally maintained across posts by the ASP.NET Framework. When a page is posted to
the server, the view state is read. Just before the page is sent back to the browser, the
view state is restored.

The view state is saved in a hidden field on the page. Because the view state is main-
tained via a form field, this technique works with all browsers. The information
saved in the hidden field is Base64 encoded, but not encrypted. As such, any infor-
mation stored in view state is not immune to prying eyes.

If there is no need to maintain the view state for a given page, you can boost perfor-
mance by disabling view state for that page. For example, if the page does not post
back to itself or if the only control on a page that might need to have its state main-
tained is populated from a database with every round trip to the server, then there
will be no need to maintain the view state for that page. To disable view state for a
page, add the EnableViewState attribute with a value of false to the Page directive:

<%@ Page Language="VB" EnableViewState="false" %>

The default value for EnableViewState is true.

Table 7-1. Comparison of types of state

Feature View state Session state Application state

Uses server resources No Yes Yes

Uses bandwidth Yes No No

Times out No Yes No

Security exposure Yes Depends No

Optimized for nonprimitive types No Yes Yes

Available for arbitrary data Yes Yes Yes

Programmatically accessible Yes Yes Yes

Scope Page Session Application

Survives restart Yes Depends on configuration No

State | 229

You can disable the view state for an application by setting the EnableViewState
property to false in the <pages> section of the web.config configuration file.

You can even maintain or disable the view state for specific controls. This is done
with the Control.EnableViewState property, which is a Boolean value with a default
of true. Disabling view state for a control, just as for the page, will improve perfor-
mance. This would be appropriate, for example, in a situation where a GridView is
populated from a database every time the page is loaded. In this case, the contents of
the control would be overridden by the database query, so there is no point in main-
taining view state for that control. If the GridView in question were named gv, the
following line of code would disable its view state:

gv.EnableViewState = false;

The simple controls, TextBox, RadioButton, CheckBoxList, and
RadioButtonList, ignore the EnableViewState properties, since the cur-
rent value is always posted back to the server anyway. Complex con-
trols such as the GridView do respect the EnableViewState property. In
cases where a DataSource control is used as the data source for a
GridView, the data is gathered fresh with every page post. In this case,
it is more performant to disable view state.

There are some situations where view state is not the best place to store data. If you
need to store a large amount of data, view state is not an efficient mechanism
because the data is transferred back and forth to the server with every page post. If
you have security concerns about the data, and the data is not being displayed on the
page, then including it in view state increases the security exposure. Finally, view
state is optimized only for strings, integers, Booleans, arrays, ArrayLists, and hash-
tables. Other .NET types may be saved in view state but will result in degraded per-
formance and a larger view state footprint.

In some of these instances, session state might be a better alternative; on the other
hand, view state does not consume any server resources and does not time out as ses-
sion state does.

To see view state in action, Create a new web site called ViewState. It does not need
to be AJAX-enabled.

This web site will have a TextBox, a Label, and a GridView control. It will also have a
Button control to force a postback to the server. In order to better demonstrate view
state, you will not use a DataSource control to populate the GridView; rather, we’ll
use ADO.NET code in the code-behind to gather the data the first time the page
loads (don’t worry, we’ll show you what to do).

The finished Design view of the page will look similar to Figure 7-6.

230 | Chapter 7: State and Life Cycle

While in Design view, drag a Button control and a TextBox control onto the page.
Change the Text property of the Button to Post, to indicate that it will post back to
the server.

Press the Enter key several times then drag a Label control onto the page.

Press the Enter key a few more times. Now drag a GridView control from the Data
section of the Toolbox onto the page.

The GridView will be populated from the AdventureWorks database. In preparation
for this, add a connection string to the web.config file by double-clicking on the file in
the Solution Explorer to open the file in the editing window.

Replace this single line (if it exists):

<appSettings />

with the lines that follow. If the above line of code is not in the file, place the text
below anyway (the quoted value should not wrap in your code, as it does on this
printed page):

<appSettings>
 <add key="AdventureWorks"
 value="Data Source=<server name>;
 Initial Catalog=AdventureWorks;
 Integrated Security=True;" />
</appSettings>

Figure 7-6. You’ll create the ViewState page for this example so that it looks like this in Design
view.

State | 231

Replace the Data Source with the appropriate SQL Server name for your machine. If
you are using SQL Express, the Data Source will be something like:

Data Source=.\SqlExpress;

Open the code-behind for the page by double-clicking on Default.aspx.vb in the Solu-
tion Explorer. Create an event handler for the Page Load event by selecting (Page
Events) in the Class Name drop-down menu at the top left of the editing window,
and in the Method Name drop-down at the top right of the editing window, select the
Load event. This will insert an empty code skeleton for the Page_Load event handler.

Type the highlighted code inside the Page_Load method from Example 7-1.

Example 7-1. Default.aspx.vb for the ViewState web site

Imports System.Data
Imports System.Data.SqlClient

Partial Class _Default
 Inherits System.Web.UI.Page

 Protected Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 If Not IsPostBack Then
 Label1.Text = "Hello World"
 PopulateGrid()
 End If
 End Sub

 Private Sub PopulateGrid()
 Dim connectionString As String = _
 ConfigurationManager.AppSettings("AdventureWorks")
 Dim connection As SqlConnection = _
 New SqlConnection(connectionString)
 Dim queryString As String = _
 "select top 1000 AddressLine1, AddressLine2, City, " + _
 "StateProvinceID, PostalCode from Person.Address"
 Dim ds As DataSet = New DataSet()
 Try
 Dim dataAdapter As SqlDataAdapter = _
 New SqlDataAdapter(queryString, connection)
 dataAdapter.Fill(ds, "Addresses")
 GridView1.DataSource = ds.Tables("Addresses")
 GridView1.DataBind()
 Catch ex As Exception
 '' Handle exception
 Finally
 connection.Close()
 End Try
 End Sub

End Class

232 | Chapter 7: State and Life Cycle

Also from Example 7-1, add the helper method called PopulateGrid, which actually
does the work of gathering and binding the data for the GridView. (Again, as with the
Trace control earlier, it is not important in this example for you to understand
exactly how PopulateGrid works.) In order for PopulateGrid to build properly, you
must include the two Imports statements at the top of the code-behind file in
Example 7-1.

Run the application. Enter some text in the TextBox and observe the result. Your
screen will appear similar to Figure 7-7.

If you run the page and there is no data visible in the grid after click-
ing the Post button, you’ve probably disabled view state for the page
(as you are instructed to do below). Make sure the EnableViewState
attribute is set to true in the Page directive at the top of the markup
file:

<%@ Page Language="VB" AutoEventWireup="false"

CodeFile="Default.aspx.vb" EnableViewState="true"

Inherits="_Default" %>

— V B C H E AT S H E E T —
Helper Methods

When your event handler has a lot of code that you might want to use again elsewhere,
it’s a good idea to separate that code out into another method. You can run that
method from various other points in your code, which is known as calling the method.
To create a helper method, you create a new Sub in the code-behind file. Be careful to
place it before the End Class statement and give it a name. The following example
shows what this looks like:

Private Sub PopulateGrid()
' Your code goes here.
End Sub

To call the method, you simply type the name the function, with the parentheses, at
the appropriate point in the code, as in:

PopulateGrid()

The execution of the application jumps to the beginning of the method, and then exe-
cutes the method. When the execution reaches the End Sub statement at the end of the
helper method, it returns to the line in the event handler where it left from and contin-
ues from there.

If you need to pass values (called parameters) from the calling method into the helper
method, you would include them in the parentheses of the method call. This example
doesn’t pass any parameters.

State | 233

Click on the Post button. The page will be posted back to the server, as indicated by
the progress indicator in the status line at the bottom of the browser. However, noth-
ing on the page will change.

The contents of the TextBox are preserved by the built-in view state capability of ASP.
NET. You have written no code anywhere to do this, it just happens.

Looking at the Page_Load event handler, you can see that the Text property of the
Label control is set when the page is first loaded, but not on subsequent post back.
Ditto for the GridView—it is populated only the first time the page is loaded. Again,
ASP.NET view state is taking care of preserving the data between postbacks.

Now watch what happens when you disable view state for the page. Open Default.
aspx in Source view. Add the EnableViewState attribute to the Page directive at the
top of the file, and set its value to false, as shown highlighted in the following code
snippet:

<%@ Page Language="VB" AutoEventWireup="false" CodeFile="Default.aspx.vb"
EnableViewState="false" Inherits="_Default" %>

Run the page again. It initially looks the same as Figure 7-7. Click the Post button to
post the page back to the server.

Figure 7-7. After you’ve entered some text in the TextBox, the ViewState page will look like this.
This is the expected result with view state enabled.

234 | Chapter 7: State and Life Cycle

The page is very different, as shown in Figure 7-8.

The TextBox still shows the current value. As mentioned in the note above, simple
controls such as TextBox ignore the EnableViewState property and always preserve
view state. However, the Label and GridView controls do respect that property. Since
they are only populated the first time the page is loaded, they no longer display the
current data after the page is posted back to the server. The Label reverts to its
default Text property, and the GridView is not even rendered to the browser if there is
no data bound to it.

In addition to preserving the values of controls, View state is very handy for some-
thing else; you can programmatically stash your own stuff in a data structure known
as the state bag, using the ViewState keyword. The state bag stores data as attribute/
value pairs in a dictionary. The attribute is a string, which is the name of the object
stored as the value. The types of objects that can be stored efficiently are the primi-
tive data types, including integers, strings, bytes, and Booleans. You can also store
arrays of primitive types. Complex types, such as DataSets and custom objects can
be stored as well, but performance will suffer.

The next example demonstrates stashing values in the state bag and then retrieving
them. In this example, a counter keeps track of the number of times a button on a
page has been clicked. As long as the page is current, the count will be correct. If you
move to another page and then return to this page, the count will start over.

Create a new web site called StateBag. On the Default page, drag a Label, called
lblCounter, and two buttons. Set the Text property of one button to Increment
Counter, and the Text property of the other button to Navigate.

Figure 7-8. When you post the page back with view state disabled, the results are very different.

State | 235

— V B C H E AT S H E E T —
Arrays and Dictionaries

You’ve seen variables in previous chapters, and you’ve seen collections, like the collec-
tion of ListItems in a RadioButtonList. An array is simply another type of collection, in
which you can store a bunch of objects in a single variable, provided they’re all of the
same type. You declare an array similar to the way you would create a variable:

Dim myArray(5) As Integer

This code creates an array called myArray, which can hold integers. Specifically, the (5)
states that the array can hold six integers. Why not five as the code suggests? Because
just as with controls, array indexes begin at zero.

To access the third integer in the array, you’d just use this syntax:

myArray(2)

Use curly braces if you want to initialize the array when you create it:

Dim myArray() As Integer = {42, 36, 128, 53, 7, 85}

Notice you don’t have to specify the length of the array; the compiler will automatically
set it to a length of six.

Arrays are particularly useful with ForEach loops, like this:

ForEach i In myArray
 i = i + 1
Next i

That little loop increments each element in the array by 1, and you don’t need to know
what values are in the array, or how many there are.

One drawback to arrays is that if you want to retrieve a value from an array, you either
have to know the index of the value you want, or else loop through the array until you
find it. The dictionary is a specific kind of array (also known as a Hashtable) that solves
this problem by associating each value with a key, instead of an index. For example,
you could have a dictionary of U.S. states, using their abbreviations as the key values.
Then, to retrieve a state’s name, you’d just have to know the abbreviation (the key).
The following code snippet creates and partially populates a Hashtable to hold the
states:

Dim States as New Hashtable()
States.Add("CA", "California")
States.Add("MA", "Massachusetts")
States.Add("PA", "Pennsylvania")

To retrieve the name of the dictionary entry with the key value of MA, you would use
the following code:

Dim strStateName as string = States("MA").ToString()

In the case of the state bag, the attribute names are the keys, and the values of those
attributes are stored as the value part of each dictionary pair.

236 | Chapter 7: State and Life Cycle

Add another page to the web site by clicking on Website ➝ Add New Item.... Call
this new page AnotherPage.aspx. Be sure the “Place code in separate file” checkbox is
checked. On that page, add a Button control, with its Text property set to Home.

While still in AnotherPage.aspx, switch to Design view, and double-click the Home
button to open the Click event handler. Add the highlighted code below:

Protected Sub Button1_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Button1.Click
 Response.Redirect("Default.aspx")
End Sub

This button will now navigate back to the Default page.

Open Default.aspx in Design view. Double-click the Navigate button to open an
event handler for that button, and add the highlighted code in Example 7-2 to the
Click event handler.

Right-click on Default.aspx in the Solution Explorer and set it as the Start page. Run
the web site and verify you can navigate back and forth between the two pages.

Stop the web site then open the code-behind for the Default page, Default.aspx.vb. It
already has an event handler for the Navigate button. There is no code necessary for
the Increment Counter button.

Add an event handler for the Load event for the Default page. Next, add the high-
lighted code from Example 7-2 to the Page_Load method.

Run the site. It will open with something like Figure 7-9. The counter will be initial-
ized to 1.

Click the Increment Counter button. You will see the counter increment in the label.
Navigate to the other page and back, however, and the counter will be reset back to
1. Just as in the previous example, the view state is retained through postbacks for
controls on the same page, but once you transfer to a different page, that state is
abandoned. This is called scope—the ViewState data is scoped to the page.

Example 7-2. Default.aspx.vb for StateBag web site

Partial Class _Default
 Inherits System.Web.UI.Page

Protected Sub Button2_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Button2.Click
 Response.Redirect("AnotherPage.aspx")
End Sub

Protected Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 ViewState("Counter") += 1
 lblCounter.Text = ViewState("Counter").ToString()
End Sub
End Class

State | 237

In the Page_Load method in Example 7-2, examine the following line:

ViewState("Counter") += 1

This line creates a ViewState dictionary object if it does not already exist, creates a
key in the dictionary called Counter, and associates the value of 1 with Counter.
When you click the Increment Counter button, the page posts back, which means
that the Load event is raised, and the method is called again. The Counter item
already exists in the dictionary, so its value is increased by 1. Note that if the page
had a dozen buttons, clicking any of them would increment the counter, since all it
takes is a postback to run the code in Page_Load.

It is interesting to note that if you simply refresh the browser, rather
than click a button on the page, the counter will not be incremented.

For this example, that works fine. However, in the general case, it is usually best to
first test to see if the object in view state exists before trying to use it.

— V B C H E AT S H E E T —
+= Operator

The += operator is VB shorthand for adding the specified amount, and assigning the
result to the original variable—in this case, incrementing by 1. The following two state-
ments are equivalent:

myVariable = myVariable + 1
myVariable += 1

There are also -=, *=, and /= operators.

Figure 7-9. When you open the StateBag page, the counter initializes to 1.

238 | Chapter 7: State and Life Cycle

Consider the case where a string array is put into the state bag in Page_Load with the
following lines of code:

Dim strArray() As String = New String() {"a", "b", "c"}
ViewState("TestArray") = strArray

Then somewhere else in your code, maybe a Button Click event handler, for exam-
ple, you want to retrieve the contents of that ViewState object and do something with
it. You must first verify that the object exists before trying to use it, because if for
some reason it does not exist, it will throw an exception and crash your program.
You can verify the object’s existence with an If...Then block that tests to see if the
ViewState object is Nothing, as in the following code snippet:

If ViewState("TestArray") IsNot Nothing Then
 Dim strNewArray() As String
 strNewArray = CType(ViewState("TestArray"), String())
End If

Then, once you are sure the ViewState object exists, you retrieve it by using the CType
function to explicitly convert the object to the desired type. This is necessary no
matter what type is stashed into the ViewState object, because regardless of what
type of object is stashed in the bag, what comes out is of type Object unless you con-
vert it back.

Session State
When you connect to an ASP.NET web site, you create a session. The session
imposes state on the otherwise stateless Web and allows the web site to recognize
that subsequent page requests are from the same browser that started the session.
This allows you to maintain state across pages until you consciously end the session
or the session times out. (The default timeout is 20 minutes, which you can change
by editing the web.config file.)

The scope of a session assumes a single user making many different page requests.
The session is not lost until the timeout period goes by with no interaction by the
user. If the user goes to lunch and does not click on anything for more than 20 min-
utes (assuming the default timeout period), the session will terminate. On the other
hand, if she clicks once every 19 minutes, the session will be maintained without
end.

While an application is running, there will be many sessions, essentially, one for each
user interacting with the web site, as indicated in Figure 7-10.

ASP.NET provides session state with the following features:

• Works with browsers that have cookies disabled.

• Identifies if a request is part of an existing session.

• Stores session-scoped data for use across multiple requests.

State | 239

• Raises session events such as Session_Start and Session_End, which you can
handle in application code.

• Automatically releases session resources if the session ends or times out.

Similar to the ViewState state bag, session data is stored as a collection of attribute/
value pair dictionary entries.

You set and retrieve the dictionary objects using the Session keyword, as shown in the
next example, which presents a set of radio buttons. Selecting one of the radio buttons
sets three session dictionary objects—two strings and a string array. These session dic-
tionary objects are then used to populate a Label control and a DropDownList control.

Create a new web site called SessionState and switch to the Design view for default.
aspx. Drag onto the page a RadioButtonList control. Set its AutoPostBack property to
True, so the effects will occur as soon as you make a selection.

Use the ListItem Collection Editor to create three items, with their Text and Value
properties set as follows:

Figure 7-10. A web site can have many simultaneous sessions, one for each user who has not timed
out.

Text Value

.Net n

Database d

Hardware h

Dan’s session

Amy’s session

Jesse’s session

Jill’s session

Web server

www.OurWebSite.com

240 | Chapter 7: State and Life Cycle

You might also want to set the RepeatDirection property to Horizontal, and set the
CellSpacing property to 20, perhaps, to spread things out a bit.

If this were part of a real application, it might make sense to make this
an AJAX-enabled web site and wrap all this in an UpdatePanel to get
much snappier performance. For this example, that is neither neces-
sary nor particularly noticeable.

Drag a Label control onto the page and set its ID to lblMessage. Clear its Text
property.

Drag a DropDownList control onto the page. Set its ID to ddl and its Visible property
to False, so that it will initially be invisible.

The Design view will look something like Figure 7-11.

Double-click the RadioButtonList to open the code-behind in an event handler for
the default event for that control, SelectedIndexChanged. Enter the code highlighted
in Example 7-3. Notice that in addition to the code inside the event handler itself,
there is also a helper method called DisplayStuff.

Figure 7-11. This is what the SessionState Default page should look like in Design view once you’ve
created it. However, populating the drop-down list is different than you might expect.

State | 241

Example 7-3. Default.aspx.vb for SessionState web site

Partial Class _Default
 Inherits System.Web.UI.Page

Protected Sub RadioButtonList1_SelectedIndexChanged(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles RadioButtonList1.SelectedIndexChanged
 Dim Books(3) As String

 Session("cattext") = RadioButtonList1.SelectedItem.Text
 Session("catcode") = RadioButtonList1.SelectedItem.Value

 Select Case RadioButtonList1.SelectedItem.Value
 Case "n"
 Books(0) = "Programming Visual Basic 2005"
 Books(1) = "Programming ASP.NET"
 Books(2) = "Programming C#"
 Case "d"
 Books(0) = "Oracle & Open Source"
 Books(1) = "SQL in a Nutshell"
 Books(2) = "Transact SQL Programming"
 Case "h"
 Books(0) = "PC Hardware in a Nutshell"
 Books(1) = "Dictionary of PC Hardware and Data Communications Terms"
 Books(2) = "Linux Device Drivers"
 End Select
 Session("books") = Books
 DisplayStuff()
End Sub

Private Sub DisplayStuff()
 If RadioButtonList1.SelectedIndex = -1 Then
 lblMessage.Text = "You must select a book category"
 Else
 Dim str As String = String.Empty
 str += "You have selected the category "
 str += CType(Session("cattext"), String)
 str += " with code '"
 str += CType(Session("catcode"), String)
 str += "'."
 lblMessage.Text = str

 ddl.Visible = True
 Dim CatBooks() As String = CType(Session("books"), String())

 ' populate the DropDownList
 ddl.Items.Clear()
 For i As Integer = 0 To CatBooks.Length - 1 Step 1
 ddl.Items.Add(New ListItem(CatBooks(i)))
 Next
 End If
End Sub

End Class

242 | Chapter 7: State and Life Cycle

Run the application and select one of the radio buttons. Then open the drop-down
list to see that the items have been populated, as shown in Figure 7-12. Now select
one of the other radio buttons. Notice the page posts back immediately, and the con-
tent of the drop-down list changes.

The first thing that happens in this code is the Text the user selected is added to the
session state and associated with the key "cattext" in the dictionary. Similarly, the
Value that goes with that text is stored in Session associated with the key "catcode".

Session("cattext") = RadioButtonList1.SelectedItem.Text
Session("catcode") = RadioButtonList1.SelectedItem.Value

The Select Case statement is used to populate the drop-down list, depending on the
user’s selection. In each case, a three-item array called Books is created, but the text
for each item varies depending on the Case statement. After Books is populated, it too
is saved to Session state:

Session("books") = Books

Then the DisplayStuff() helper method is called. Because cattext, catvalue, and
books have all been saved in session state, you don’t need to pass their values to the
helper method. DisplayStuff() can retrieve them directly from the Session dictio-
nary, for example, when it concatenates cattext to the string:

str += CType(Session("cattext"), String)

— V B C H E AT S H E E T —
Select Case Statement

You saw the If statement back in Chapter 4. The Select Case statement is a way to
string together multiple If statements in a clearer manner. The Select Case statement
opens with the keywords Select Case, followed by the variable being evaluated:

Select Case myVariable

Next is a series of Case statements, each with a different condition that will be com-
pared against the value of myVariable. Each case is followed by some code that runs if
the value of the variable matches the condition. Assuming myVariable is a string that
represents a size, the Case statements might go like this:

Case "Small"
 lblMyLabel.Text = "Just a little."
Case "Medium"
 lblMyLabel.Text = "Standard size."
Case "Large"
 lblMyLabel.Text = "Super-size me."

Once a case is matched, only the code for that case is executed; the rest of the code is
ignored. In this example, the variable being evaluated is RadioButtonList1.
SelectedItem.Value, the value that the user chose.

State | 243

Remember, you need to use the CType method to convert the value to a string before
you can use it.

Similarly, the helper method retrieves the books object, uses CType to convert it to an
array of strings, and stores it in the new array CatBooks():

Dim CatBooks() As String = CType(Session("books"), String())

Next, the method uses CatBooks() in a loop to populate the drop-down list.

Session state is enabled by default and works right out of the box. To increase perfor-
mance, you can disable session state on a per-page, per-web site, or per-machine
basis.

To disable session state for a page, include the following highlighted attribute in the
Page directive at the top of the markup file:

<%@ Page Language="VB" AutoEventWireup="false"
 CodeFile="Default.aspx.vb"
 Inherits="_Default"

EnableSessionState="False" %>

Valid values for EnableSessionState are True, False, and ReadOnly. ReadOnly provides
better performance than True as long as you do not need to edit the values stored in
session. How do the values get into session state if it is set to ReadOnly? From another
page whose value is True.

Figure 7-12. When you select one of the radio buttons in the SessionState web site, the content of
the drop-down list changes immediately.

244 | Chapter 7: State and Life Cycle

To configure session state on a per-web site or per-machine basis, you must edit the
configuration file, web.config, in the web site virtual directory.

For simple single-server, single-processor web sites with relatively low traffic (mea-
sured in hits per minute rather than hundreds or thousands of hits per minute), the
default configuration is probably good enough. In more complex or demanding sce-
narios, you can configure Session state to accommodate a wide range of require-
ments. This would include the length of the timeout, whether or not browser cookies
are used, where the session information is stored (in memory on the local machine,
in memory on a state server, or in a database somewhere), and so on.

Application State
You have seen how view state, when accessed with the ViewState keyword, is scoped
to the Page. You have also seen that session state, when accessed with the Session
keyword, is scoped to the Session. Finally, there is application state, which when
accessed with the Application keyword, is scoped across the entire application; that
is, it applies to all sessions.

The syntax for getting and setting values in Application state are exactly analogous
to ViewState and Session, so we will not include an example here. There are several
things to consider however.

First, because multiple sessions can access the same Application dictionary object, it
is possible for two people to change the value simultaneously. This is not an issue for
read-only access. However, if the application data is editable by users, it is possible
for two (or more) users to overwrite each other’s values, resulting in faulty data at
best. To prevent this, you can lock the Application object, but that can cause the
application to grind to a halt.

Second, unlike view state and specially configured session state, application state
always consumes server memory, so do not store too much “stuff” in application
state.

Third, data stored in application state will not survive a server restart or crash. If
something needs to persist across application halts, you need to store it elsewhere,
such as in web.config as an AppSetting (but only if it is read-only), or in a database.

And finally, application state is specific to a single processor on a single machine. If
your environment includes either multiprocessor servers (web garden) or multiple
web servers (web farm), do not use application state. If you need this type of func-
tionality, you will need to create it from scratch, perhaps storing the requisite values
in a database.

Summary | 245

Summary
• When you issue a request from your browser, that request is sent across the

Internet to a remote server, which processes the request, possibly accesses a
database, and then returns the HTML to the browser, where the page is
rendered.

• A session is the period where a single user interacts with the web application, no
matter how many different pages are visited.

• The values of all the controls on the page are referred to as state. The Web was
originally intended not to preserve state, but that has evolved over time.

• Each step of the ASP.NET life cycle has events that allow you to change or add
to the default behavior for that step.

• The control tree is a hierarchical representation of all the controls on a single
page.

• The Trace attribute lets you see a great deal of information about your page,
including the control tree.

• The page life cycle differs depending on whether or not the page is loaded as a
result of a postback.

• The Start phase determines whether the page was requested by another page, or
is a postback.

• The Initialization phase applies personalization and themes to the page, and also
reads or initializes control properties.

• The Load phase sets the control properties.

• The Validation phase is where validation methods are checked on all eligible
controls on the page.

• The Rendering phase is where each control is called to render itself in the
browser.

• The Unload phase is last, and allows you to clean up any resources you need to.

• ASP.NET can automatically maintain state for server controls, avoiding the need
to write any custom code.

• View state is the state of the page and any controls on it.

• You can disable the view state, by adding EnableViewState="false" to the Page
directive. Simple controls such as text boxes, radio buttons and checkboxes
always preserve view state, no matter what you set in the Page directive. More
complex controls, however, can have their view state disabled.

• Although the view state is maintained automatically, you can use the state bag of
view state to store your own values from page to page, using the ViewState key-
word.

246 | Chapter 7: State and Life Cycle

• The state bag uses a dictionary structure, with keys and values that you define as
needed.

• Session state is not automatically maintained from page to page, but you can
specify that objects be preserved in session state.

• Session state also uses a dictionary that you define as needed. You use the
Session keyword to add items to this dictionary.

• You can disable session state for the page by placing the attribute
EnableSessionState="False" in the Page directive, or for the entire site by editing
web.config.

• Application state is similar to view state and session state. You can access the
dictionary with the Application keyword.

By now, you’ve developed a lot of skills, and created many web pages that look and
act professional, both up front and under the hood. When you take your shiny web
site with its fancy controls out for a spin in the real world, though, you’re going to
come up against a tough reality: stuff breaks...a lot. As you may have already discov-
ered from the exercises in this book, a typo in the wrong place, or a misconfigured
property, can lead to a site that doesn’t work and a lot of time staring at the code try-
ing to figure out where you went wrong. Even when all of your code works perfectly,
you can still run into problems with outside data sources, user errors, and other
things beyond your control. Errors and bugs are part of programming, and nobody
expects you to write perfect code the first time. What you want to learn, though, is
how to find and fix bugs in the shortest possible time. The IDE has a host of tools to
help you do just that, and that’s what we’ll discuss next.

Exercises | 247

B R A I N B U I L D E R

Quiz
1. What is a session?

2. What is the state of a page?

3. What attribute can you use to see information about the different stages of the
page life cycle?

4. In which life cycle phase does the page determine if it was called as the result of a
postback?

5. What event is usually used to take actions during the Load phase?

6. What are the four kinds of state that ASP.NET manages? Which one can you not
affect in any way?

7. What does the EnableViewState="false" attribute do?

8. Where would you store the value of a counter that is incremented each time the
page is loaded?

9. Suppose you wanted to ask the user to enter his or her name on a page, and
retain that value the entire time the user is at your site. What’s the best mecha-
nism to use?

10. What’s the proper syntax for storing that username?

Exercises
Exercise 7-1. You’ll start out with a simple exercise that uses your knowledge of the
page life cycle. Create a simple page with a label, lblPostBack, and a button,
btnPostBack, with a Text property of “Post Back”. Write the appropriate code to
cause the label to display the message “You’re seeing this page for the first time!”
when the page initially loads. Whenever the page is loaded as a result of a postback,
the label should display the message “Welcome back to the page.”

Exercise 7-2. Create a page with a label, lblMessage, and a button, btnPostBack. The
first time you access the page, the label should output a message “Page first accessed
at,” followed by the date and time. Each time the button is clicked, add a new line to
the label with the message “Page posted back at,” followed by the date and time.
(Hint: If you don’t recall how to access the current date and time, see Chapter 3.)
Your page should look something like Figure 7-13.

Exercise 7-3. Make the Default.aspx page from Exercise 7-2 the home page of the
exercise. Add two more pages to the project; call them SecondPage.aspx and
ThirdPage.aspx. Add an <h1> to Default.aspx to identify it, and then add two naviga-
tion buttons to navigate to each of the other two pages.

248 | Chapter 7: State and Life Cycle

SecondPage.aspx and ThirdPage.aspx should each contain an <h1> to identify them, a
button for posting back, two buttons for navigating to each of the other two pages,
and a label that displays the string created on the home page. Both of these pages
should add a message to the string indicating when they were accessed for the first
time, and when they are posted back. After you’ve navigated around the site for a bit,
it should look like Figure 7-14.

Figure 7-13. Your goal for Exercise 7-2, after clicking the Post Back button a few times.

Exercises | 249

Figure 7-14. Your goal for Exercise 7-3, after clicking around a bit.

250

Chapter 8CHAPTER 8

Errors, Exceptions, and Bugs, Oh My! 8

Every computer programmer has run into bugs. It comes with the territory. Many
bugs are found during the coding process. Others pop up only when an end user per-
forms a specific and unusual sequence of steps or the program receives unexpected
data. You should always try to find bugs early in the development process and avoid
having end users find your bugs for you. Countless studies have shown that the ear-
lier you find a bug, the easier and less expensive it is to fix.

If your program does run into a problem, you will want to recover quickly and invisi-
bly, or, at worst, fail gracefully. ASP.NET provides tools and features to help reach
these goals:

Tracing
You can trace program execution at either the page or application level. ASP.NET
provides an extensible trace log with program life-cycle information.

Symbolic debugging
You can step through your program line by line, set breakpoints, examine and
modify variables and expressions, and step into and out of classes, even those
written in other languages.

Error handling
You can handle standard or custom errors at the application or page level. You
can also show different error pages for different errors.

To get started exploring the ASP.NET debugging tools, you should first create a sim-
ple web site to which you will add tracing code. You will then introduce bugs into
the program and use the debugger to find and fix the bugs.

Creating the Sample Application
To start, create a new web site and name it DebuggingApp. This will consist of a
single web page containing a header label, a DropDownList with a label below it to dis-
play the selected item, and a hyperlink.

Creating the Sample Application | 251

In Design view, drag a Label control to the top of the page and set its Text property
to the following:

Tracing, Debugging & Error Handling Demo

Change its Font-Name property to Arial Black, its Font-Size property to Large, and its
Font-Bold property to True.

Drag a DropDownList control onto the form. Set its ID property to ddlBooks. Change
its AutoPostBack property to True.

Add a label below the DropDownList with an ID of lblDdl. Set the Text property so it
is empty.

Finally, add a HyperLink control below lblDdl. Set its ID property to hlTest. Change
the Text property to “Link To” and change the NavigateUrl property to TestLink.
aspx. No page with this name exists. This is an intentional error to demonstrate error
handling later in the chapter.

The Design view will look something like that shown in Figure 8-1.

The DropDownList will be dynamically populated every time the page loads in the
Page_Load method. To create this method, double-click Default.aspx.vb in the Solu-
tion Explorer to open the code-behind file. Click the Class Name drop-down at the
upper left of the editing window and select (Page Events). Click the Method Name
drop-down on the upper right and select the Load event to create the code skeleton
for the Page_Load method. Enter the highlighted code from Example 8-1 into the
Page_Load method.

Figure 8-1. Here’s what the sample application, DebuggingApp, looks like in Design view.

252 | Chapter 8: Errors, Exceptions, and Bugs, Oh My!

There is no need to create the array of book names and populate the DropDownList on
every page load because view state will handle that on postback. Therefore, you test
the IsPostBack property and only create the array the first time the page is loaded.

Now you need to add the event-handling code for the drop-down list. In Design
view, double-click the control to open the code-behind file, Default.aspx.vb. The
cursor will be located in the event handler method ddlBooks_SelectedIndexChanged.
Type in the highlighted code from Example 8-2.

Run the app and select a book title from the DropDownList. You will see something
similar to Figure 8-2.

You will use this application through the rest of this chapter to demonstrate various
techniques for analyzing and debugging code in ASP.NET and for handling errors in
your application.

Example 8-1. Page_Load method for the Default page in DebuggingApp

Protected Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 If Not IsPostBack Then
 ' Build 2 dimensional array for the lists
 ' First dimension contains bookname
 ' Second dimension contains ISBN number
 Dim books(,) As String = { _
 {"Programming Silverlight", "0000000001"}, _
 {"Programming .NET 3", "0000000002"}, _
 {"Programming ASP.NET, 4th Edition", "0000000003"}, _
 {"Programming Visual Basic 9", "0000000004"}, _
 {"Programming C#, 5th Edition", "0000000005"}, _
 {"Learning ASP.NET ", "0596513976"} _
 }

 ' Now populate the list
 For i As Integer = 0 To books.GetLength(0) - 1
 ' add both Text and Value
 ddlBooks.Items.Add(New ListItem(books(i, 0), books(i, 1)))
 Next
 End If
End Sub

Example 8-2. SelectedIndexChanged event handler for ddlBooks

Protected Sub ddlBooks_SelectedIndexChanged(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles ddlBooks.SelectedIndexChanged
 ' check to verify that something has been selected
 If ddlBooks.SelectedIndex <> -1 Then
 lblDdl.Text = ddlBooks.SelectedItem.Text + " ---> ISBN: " _
 + ddlBooks.SelectedItem.Value
 End If
End Sub

Tracing | 253

Tracing
Tracing is the technique of reporting the value or state of things in your program, as
it runs. It is an easy way to determine what is going on in your program. Back in the
days of classic ASP, the only way to trace what was happening in your code was to
insert Response.Write statements in strategic places. This allowed you to see that you
had reached a known point in the code and, perhaps, to display the value of some
variables. The big problem with this hand-tracing technique, aside from the amount
of work involved, was that you had to laboriously remove or comment out all those
statements before the program went into production. ASP.NET provides better and
easier ways of gathering the trace information.

— V B C H E AT S H E E T —
For Loops

You saw the For Each loop back in Chapter 6; the For loop is simply a more general
version. The first line of a For loop has three parts: the condition, the beginning, and
the end. Usually, you create a loop control variable, often an integer named i, to be the
condition. For example, if you wanted a loop that would run ten times, you would start
it like this:

For i As Integer = 1 To 10

Inside the loop, you place whatever code you want to run on each iteration. Then you
end the loop with a Next statement. That causes execution to return to the beginning
of the loop until the condition reaches the upper limit.

You can also use your control variable within the loop, as it increments. For example,
this loop would add the numbers 1 through 10 to myString:

For i As Integer = 1 To 10
 myString = myString + i + " "
Next

This works because each time through the loop, i will be incremented.

Usually, you don’t know exactly how many times you want your loop to run, so you set
the upper limit at runtime. In Example 8-1, you want to loop through each item in the
books array. Array index start at 0, as we’ve mentioned, and you use the GetLength()
method on the array to find out how many items are contained in it. However, the
length of the array starts at 1, not 0, so you have to use GetLength() - 1 to find the cor-
rect upper boundary for the loop:

For i As Integer = 0 To books.GetLength(0) - 1

Notice that i is also used within the loop, to extract the item with the index of i from
books, and add it to the ddlBooks collection of ListItems, also with the same index of i.

254 | Chapter 8: Errors, Exceptions, and Bugs, Oh My!

Page-Level Tracing
To add page-level tracing, modify the Page directive at the top of the .aspx page (in
Source view) by adding a Trace attribute and setting its value to true, as follows
(remember to close the browser first):

<%@ Page Language="VB" AutoEventWireup="false" CodeFile="Default.aspx.vb"
 Inherits="_Default" Trace="true" %>

When you view this page, tables will be appended to the bottom of the page that
contain a wealth of information about your web application. Select a book from the
drop-down list and you will see something like Figure 8-3.

The top section, labeled Request Details, shows basic information, including the
SessionID, the Time of Request, Request Type, and Status Code (see Table 8-1).
Every time the page is posted to the server, this information is updated. If you change
the selection (remember that AutoPostBack is set to true), you will see that the Time
of Request is updated, but the SessionID remains constant.

Every web user has seen at least some of these status codes in their
normal browsing, including the ubiquitous “404 - Not Found”. For a
complete list, go to http://en.wikipedia.org/wiki/List_of_HTTP_status_
codes.

Figure 8-2. Here’s DebuggingApp in action. After you select a book title from the DropDownList,
its title and ISBN are output in the Label.

http://en.wikipedia.org/wiki/List_of_HTTP_status_codes
http://en.wikipedia.org/wiki/List_of_HTTP_status_codes

Tracing | 255

Figure 8-3. When you enable tracing in your file, you get a lot of data as a result.

256 | Chapter 8: Errors, Exceptions, and Bugs, Oh My!

The next section, labeled “Trace Information,” is the trace log (this section was
shown briefly in Chapter 7 in the discussion of life cycle), which provides life-cycle
information. This includes elapsed times, in seconds, since the page was initialized
(the From First(s) column) and since the previous event in the life cycle (the From
Last(s) column). You can add custom trace information to the trace log, as explained
later in the next section.

The next section in the trace, under the heading Control Tree, lists all the controls
on the page in a hierarchical manner, including the name of the control, its type, and
its size in bytes, on the page, in the ViewState state bag, and in control state.

This is followed by Session and Application State summaries, and itemizations of the
Cookies and Headers collections. Finally, there is a list of all the server variables.

Inserting into the Trace Log
You can add custom information to the trace output by writing to the Trace object.
This object exposes two methods for putting your own statements into the trace log:
Write and Warn. The only difference between the two methods is that Warn writes to
the log in red. The Warn and Write methods can take either a single argument, two
arguments, or two strings and an exception object (generated by the .NET Frame-
work when using a try/catch block), as the following cases illustrate:

Trace.Warn("Warning Message")
Inserts a record into the trace log with the message passed in as a string.

Table 8-1. Commonly Used HTTP Status Codes

Category Number Description

Informational (100–199) 100 Continue

101 Switching protocols

Successful (200–299) 200 OK

204 No content

Redirection (300–399) 301 Moved permanently

305 Use proxy

307 Temporary redirect

Client Errors (400–499) 400 Bad request

401 Unauthorized

402 Payment required

403 Forbidden

404 Not found

408 Request timeout

417 Expectation failed

Server Error (500–599) 500 Internal Server Error

Tracing | 257

Trace.Warn("Category","Warning Message")
Inserts a record into the trace log with the category and message you pass in.

Trace.Warn("Category","Warning Message", excp)
Inserts a record into the trace log with a category, warning message, and
exception.

To see this in action, add the highlighted code from Example 8-3 to the code-behind
file in your sample web site, DebuggingApp.

Example 8-3. Writing to the Trace object

Protected Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 Trace.Write("In Page_Load")
 If Not IsPostBack Then
 Trace.Write("Page_Load", "Not PostBack.")
 ' Build 2 dimensional array for the lists
 ' First dimension contains bookname
 ' Second dimension contains ISBN number
 Dim books(,) As String = { _
 {"Programming Silverlight", "0000000001"}, _
 {"Programming .NET 3", "0000000002"}, _
 {"Programming ASP.NET, 4th Edition", "0000000003"}, _
 {"Programming Visual Basic 9", "0000000004"}, _
 {"Programming C#, 5th Edition", "0000000005"}, _
 {"Learning ASP.NET ", "0596513976"} _
 }

 ' Now populate the list
 For i As Integer = 0 To books.GetLength(0) - 1
 ' add both Text and Value
 ddlBooks.Items.Add(New ListItem(books(i, 0), books(i, 1)))
 Next
 End If
End Sub

Protected Sub ddlBooks_SelectedIndexChanged(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles ddlBooks.SelectedIndexChanged
 ' force an exception
 Try
 Dim a As Integer = 0
 Dim b As Integer = 5 / a
 Catch ex As Exception
 Trace.Warn("User Action", "Calling b=5/a", ex)
 End Try

 ' check to verify that something has been selected
 If ddlBooks.SelectedIndex <> -1 Then
 lblDdl.Text = ddlBooks.SelectedItem.Text + " ---> ISBN: " _
 + ddlBooks.SelectedItem.Value
 End If
End Sub

258 | Chapter 8: Errors, Exceptions, and Bugs, Oh My!

The first message is added in the Page_Load method to signal that you’ve entered that
method:

Trace.Write("In Page_Load")

The second message is added if the page is not a postback:

If Not IsPostBack Then
 Trace.Write("Page_Load", "Not PostBack.")

This second message is categorized as Page_Load; using a category can help you orga-
nize the trace output. The effect of these two Write statements is shown in Figure 8-4.

The third message is added to demonstrate the process of inserting an exception into
the error log. The ddlBooks_SelectedIndexChanged event handler now contains code
to force an exception by dividing by zero. The code catches that exception and logs
the exception with a Trace statement, as shown by the following code fragment:

Try
 Dim a As Integer = 0
 Dim b As Integer = 5 / a
Catch ex As Exception
 Trace.Warn("User Action", "Calling b=5/a", ex)
End Try

Figure 8-4. You can insert Trace.Write statements in your code to send specific messages to the
trace output.

Debugging | 259

The output from this Trace statement is shown in Figure 8-5.

Because this Trace statement was written by calling the Warn method rather than the
Write method, the trace output appears in red onscreen (though not in your printed
copy of this book). Notice that string you passed in, Calling b=5/a, is displayed, fol-
lowed by an error message extracted automatically from the exception object.

Implementing Trace statements is easy, and when it’s time to put your page into pro-
duction, all these statements can remain in place. The only modification you need to
make is to change the Trace attribute in the Page directive from true to false.

Debugging
Tracing provides you with a snapshot of the steps your code has taken after the code
has run. At times, however, you’d like to monitor your code while it is running.
What you want is more of a CAT scan than an autopsy. The code equivalent of a
CAT scan is a symbolic debugger.

When you run your code in the debugger, you can watch your code work, step by
step. As you walk through the code, you can see the variables change values, and you
can watch as objects are created and destroyed.

This section will provide a brief introduction to the most important parts of the
debugger that accompanies the VS/VWD IDE. For complete coverage of how to use
the debugger, we urge you to spend time with the documentation and to experiment
freely. The debugger is one of the most powerful tools at your disposal for learning
ASP.NET.

An application can be configured to either enable or disable debugging. This is done
through the configuration file, web.config. As you’ve already seen many times, the
first time you run a new application, a dialog box will pop up, offering to automati-
cally make the necessary edits to web.config to enable debugging.

Figure 8-5. When you use Trace.Warn to indicate a caught exception, it looks like this. The Trace.
Warn output displays in red.

260 | Chapter 8: Errors, Exceptions, and Bugs, Oh My!

The debugging configuration information is contained within the <compilation>
section, within the <system.web> section, which in turn is contained within the
<configuration> section. So, a typical compilation configuration snippet will look
something like Example 8-4.

Setting debug to false improves the runtime performance of the application.

The Debug Toolbar
A Debug toolbar is available in the IDE. To make it visible, click the View ➝ Tool-
bars menu commands, and then click Debug, if it is not checked. Table 8-2 shows
the icons that appear on the Debug toolbar.

Example 8-4. Debug configuration code snippet from web.config

<?xml version="1.0"?>
<configuration>

 <system.web>
.
.
.
 <compilation debug="true" strict="false" explicit="true"/>
 />

Table 8-2. Debug toolbar icons

Icon
Debug menu
equivalent

Keyboard
shortcut Description

Toolbar handle. Click and drag to move the toolbar to a new location.

Start/Continue F5 Starts or continues executing the program.

Break All Ctrl-Alt-Break Stops program execution at the currently executing line.

Stop Debugging Shift-F5 Stops debugging.

Restart Ctrl-Shift-F5 Stops the run currently being debugged and immediately begins a new
run.

Shows next statement that will be executed.

Step Into F11 If the current line contains a call to a method or function, this icon will
single-step the debugger into that method or function.

Step Over F10 If the current line contains a call to a method or function, this icon will
not step into that method or function but will go to the next line after
the call.

Debugging | 261

Breakpoints
The crux of the biscuit is the apostrophe.

—Frank Zappa, “Apostrophe (’)”

Breakpoints are at the heart of debugging. A breakpoint is an instruction to .NET to
run to a specific line in your code and to stop and wait for you to examine the cur-
rent state of the application. As the execution is paused, you can do the following:

• Examine and modify values of variables and expressions.

• Single-step through the code.

• Move into and out of methods and functions, even stepping into classes written
in other .NET languages compliant with the Common Language Runtime.

• Perform any number of other debugging and analysis tasks.

Setting a breakpoint

You can set a breakpoint in any window editing a .NET-compliant language, such as
VB or C#, by single-clicking the gray vertical bar along the left margin of the win-
dow. A red dot will appear in the left margin and the line of code will be highlighted,
as shown in Figure 8-6.

Breakpoint window

You can see all the breakpoints currently set by looking at the Breakpoint window.

For some strange reason, the Breakpoint window is available in Visual
Studio 2005 but not in Visual Web Developer 2005.

To display the Breakpoint window, perform any one of the following actions:

Step Out Shift-F11 If the current line is in a method or function, that method or function
will complete and the debugger will stop on the line after the method or
function call.

Hexadecimal display toggle.

Output Debug window selector.

Toolbar options. Offers options for adding and removing buttons from
all toolbars (Debug, Text Editor, and so on).

Table 8-2. Debug toolbar icons (continued)

Icon
Debug menu
equivalent

Keyboard
shortcut Description

262 | Chapter 8: Errors, Exceptions, and Bugs, Oh My!

• Press Ctrl-Alt-B.

• Select Breakpoints from the Debug ➝ Windows menu command.

• Click the Windows icon of the Debug toolbar and select Breakpoints.

A Breakpoint window is shown in Figure 8-7.

You can toggle a breakpoint between Enabled and Disabled by clicking the corre-
sponding checkbox in the Breakpoint window.

Breakpoint properties

Sometimes you don’t want a breakpoint to stop execution every time the line is
reached. VS2005 offers several properties that can be set to modify the behavior of a
breakpoint. These properties can be set via the property menu, arrived at in either of
two ways:

Figure 8-6. Setting a breakpoint in a code-editing window is simple; just click in the left margin of
your code.

Figure 8-7. The Breakpoint window shows you all the breakpoints you currently have set.
Unfortunately, this window is only available in Visual Studio 2005.

Debugging | 263

• Right-click the breakpoint glyph in the left margin.

• Open the Breakpoint window and right-click the desired breakpoint.

Again, this feature is available only in Visual Studio 2005, not VWD.
However, right-clicking the breakpoint glyph in the left margin in
VWD will offer the choice of deleting or disabling the breakpoint.

In either case, you will see the context menu shown in Figure 8-8.

The first two items in the breakpoint properties menu allow you to delete or disable
the selected breakpoint. The Disable menu item will toggle each time you click it,
and when the breakpoint is disabled, the icon will appear as an empty circle.

The following menu items are available:

Location. The Location menu item brings up the dialog box shown in Figure 8-9,
which is fairly self-explanatory. Using this dialog box is equivalent to setting a break-
point in the code window, with a few additional options.

Condition. The Condition button brings up the dialog box shown in Figure 8-10.

You can enter any valid expression in the edit field. This expression is evaluated
when program execution reaches the breakpoint. Depending on which radio button
is selected and how the Condition expression evaluates, the program execution will
either pause or move on. The two radio buttons are labeled as follows:

Figure 8-8. When you right-click in a breakpoint, you’ll see this properties menu, where you can
delete or disable a breakpoint, and also make a number of refinements to the breakpoint’s
behavior.

264 | Chapter 8: Errors, Exceptions, and Bugs, Oh My!

Is true
If the Condition entered evaluates to a Boolean true, the program will pause.

Has changed
If the Condition entered has changed, then the program will pause. On the first
pass through the piece of code being debugged, the breakpoint will never pause
execution because there is nothing to compare against. On the second and sub-
sequent passes, the expression will have been initialized and the comparison will
take place.

Hit count. Hit count is the number of times that spot in the code has been executed
since either the run began or the Reset Hit Count button was pressed. The Hit Count
button brings up the dialog box shown in Figure 8-11.

Clicking the drop-down list presents the following options:

• Break always

• Break always when the hit count is equal to

Figure 8-9. You can use the File Breakpoint dialog box to set a breakpoint at a specific spot in your
file.

Figure 8-10. You can use the Breakpoint Condition dialog box to specify when you want the
breakpoint to stop execution.

Debugging | 265

• Break always when the hit count is a multiple of

• Break always when the hit count is greater than or equal to

If you click any option other than “break always” (the default), the dialog box will
add an edit field for you to enter a target hit count.

Suppose this is a breakpoint set in a loop of some sort. You select “break when the
hit count is a multiple of” and enter 5 in the edit field. The program will pause execu-
tion every fifth time it runs.

When a hit count is set, the red breakpoint icon in the left margin of the window has
a plus sign in the middle of it.

When Hit The When Hit menu item brings up the dialog box shown in
Figure 8-12. By default, the Print a message checkbox is unchecked. When this box
is checked, the red circular breakpoint icon in the left margin of the window changes
to a diamond shape.

You can also elect to run one of a large selection of predefined macros, such as Find-
Case, SaveView, and SaveBackup.

By default, the Continue execution checkbox is checked.

Breakpoint icons

Each breakpoint symbol, or glyph, conveys a different type of breakpoint. These
glyphs appear in Table 8-3.

Figure 8-11. You can use the Breakpoint Hit Count dialog box to cause the breakpoint to only
activate at set intervals.

Table 8-3. Breakpoint glyphs

Icon Type Description

Enabled A normal, active breakpoint. If breakpoint conditions or hit count settings are met, execution
will pause at this line.

Disabled Execution will not pause at this line until the breakpoint is re-enabled.

266 | Chapter 8: Errors, Exceptions, and Bugs, Oh My!

Stepping Through Code
One of the most powerful techniques for debugging an application is to single-step
through the code, giving you the opportunity to see the execution flow and to exam-
ine the value of variables, properties, objects, and so on. To see this in action, go to
the code-behind file in the example. Place a breakpoint on the call to the Add method
of the DropDownList control’s Items collection, the line in the Page_Load method
where the items are added to the DropDownList. Then run the program.

The breakpoint will be hit, and the program will stop execution at the line of code
containing the breakpoint, which will turn yellow. The breakpoint glyph in the left
margin will have a yellow arrow on top of it. The screen should look like Figure 8-13.

Error The location or condition is not valid.

Warning The code at this line is not yet loaded, so a breakpoint can’t be set. If the code is subsequently
loaded, the breakpoint will become enabled.

Hit Count A Hit Count condition has been set.

Figure 8-12. You can use the When Breakpoint Is Hit dialog box to output a message or run a
macro whenever the breakpoint is reached.

Table 8-3. Breakpoint glyphs (continued)

Icon Type Description

Debugging | 267

You can now move forward a single statement or line at a time, stepping into any
methods or functions as you go, by using one of the following techniques:

• Select the Debug ➝ Step Into menu command.

• Click the Step Into icon (see Table 8-3 for a picture of the icon).

• Press F11.

You can step through the code without going through called functions or methods.
That is, you can step over the calls rather than into the calls, using one of the follow-
ing techniques:

• Select the Debug ➝ Step Over menu item.

• Click the Step Over icon (see Table 8-3 for a picture of the icon).

• Press F10.

Finally, if you are debugging in a called method or function, you can step out of that
method or function call, using one of the following techniques:

• Select the Debug ➝ Step Out menu command.

• Click the Step Out icon (see Table 8-3 for a picture of the icon).

• Press Shift-F11.

Figure 8-13. When a breakpoint is hit, the program’s execution stops, and the current line of code is
highlighted.

268 | Chapter 8: Errors, Exceptions, and Bugs, Oh My!

Examining Variables and Objects
Once the program is stopped, it is incredibly intuitive and easy to examine the value
of objects and variables currently in scope. Place the mouse cursor over the top of
any variable or object in the code, wait a moment, and then a little pop-up window
will appear with its current value.

If the cursor is hovering over a variable, the pop up will contain the type of variable,
its value (if relevant), and any other properties it may have.

If the cursor is hovering over some other object, the pop-up window will contain
information relevant to its type, including its full namespace, syntax, and a descrip-
tive line of help.

Debug Windows
When the program execution is paused for debugging, a number of windows may
appear at the bottom of the IDE, as shown in Figure 8-14. These debug windows are
optimized to show program information in a specific way. The following sections
describe the most commonly used windows.

All the debug windows can be accessed in one of three ways: with a shortcut key
combination, from the Debug ➝ Windows menu command, or from the Windows
icon of the Debug toolbar, as indicated in Figure 8-14. Table 8-4 summarizes the
debug windows, along with the shortcut keys for accessing each window.

Visual Studio 2005, but not VWD, includes some additional, more
arcane debug windows, including ones for Threads, Modules, Regis-
ters, and Memory.

Immediate window

The Immediate window allows you to type almost any variable, property, or expres-
sion and immediately see its value.

Table 8-4. Debug windows

Window name Shortcut keys Description

Immediate Ctrl-Alt-I View any variable or expression.

Locals Ctrl-Alt-V followed by L View all variables in the current context.

Watch Ctrl-Alt-W, followed by either 1, 2, 3, or 4 View up to four different sets of variables of your choosing.

Call Stack Ctrl-Alt-C View all methods on the call stack.

Script Explorer Ctrl-Alt-N Lists script files currently loaded in the program being
debugged.

Debugging | 269

To see the value of an expression, prepend it with a question mark. For instance, if
the breakpoint is on the line shown in Figure 8-13, you will see the value of the inte-
ger i by entering the following line:

?i

in the Immediate window and pressing Enter. Figure 8-15 shows the result of that
exercise; additionally, this figure shows the process of assigning a new value to the
variable i and then viewing its value again. If you change the value of a variable in
the Immediate window and then continue to run the program, the new value will
now be in effect.

You can clear the contents of the Immediate window by right-clicking anywhere in
the window and selecting Clear All. Close the window by clicking the X in the upper-
right corner. If you close the window and subsequently bring it back up in the same
session, it will still have all the previous contents.

Figure 8-14. Debug windows are accessible from the Debug menu, a shortcut key combination, or
by clicking the Windows icon on the Debug toolbar.

Windows icon on the
Debug toolbar

270 | Chapter 8: Errors, Exceptions, and Bugs, Oh My!

Locals window

The Locals window shows all the variables local to the current context displayed in a
hierarchical table.

A typical Locals window is shown in Figure 8-16.

There are columns for the name of the object, its value, and its type. A plus sign next
to an object indicates that it has child objects that are not displayed, while a minus
sign indicates that its child objects are visible. Clicking a plus symbol drills down the
tree and shows any children, while clicking a minus symbol contracts the tree and
displays only the parent.

A very useful feature is that values that change in the current step display in red.

You can select and edit the value of any variable. The value will display as red in the
Locals window. Any changes to values take effect immediately.

Watch window

The Watch window is the same as the Locals window, except that it shows only vari-
ables, properties, or expressions you enter into the Name field in the window or drag
from another window. The biggest advantage of using a Watch window is that it
allows you to decide exactly which objects you want to watch.

Figure 8-15. The Immediate window allows you to see the value of a variable at the current
breakpoint, and also to change that variable.

Figure 8-16. The Locals window shows all the current variables at the point where execution
stopped.

Error Handling | 271

In addition to typing in the name of the object you want to watch, you can also drag
and drop variables, properties, or expressions from a code window. Select the object
in the code you want to put in the Watch window and then drag it to the Name field
in the open Watch window.

You can also drag and drop objects from the Locals windows into the Watch win-
dow. To do so, both the source window and the Watch window must be open.
Highlight a line in the Locals window and drag it down over the Watch tab. The
Watch window will come to the foreground. Continue dragging the object to an
empty line in the Watch window.

Call Stack window

The Call Stack window displays the names of the methods on the call stack and their
parameter types and values. You can control which information is displayed in the
Call Stack window by right-clicking anywhere in the window and toggling field
names that appear in the lower portion of the pop-up menu.

Error Handling
You can and should avoid bugs, but there are runtime errors that cannot be avoided
and should be handled as gracefully as possible. You would like to avoid having the
end user see ugly or cryptic error messages, or worse, having the application crash.
Errors can arise from any number of causes: user action, such as entering invalidly
formatted text into a field, program logic errors, or circumstances entirely out of
your control, such as an unavailable file or a downed network.

The simplest bugs to find and fix are syntax errors: violations of the rules of the lan-
guage. For example, suppose you had the following line of code in your VB program:

Dim i as Integr

When you compile the program, you will get a compiler error because the keyword
to declare an integer is misspelled.

Using the IDE dramatically reduces your syntax errors. Depending on how the IDE is
configured, any code element that isn’t recognized is underlined. If Auto List Mem-
bers is turned on (Tools ➝ Options ➝ Text Editor ➝ All Languages), the incidence of
syntax errors is further reduced. Check the “Show All Settings” checkbox (and leave
it checked) to see these menu options.

If any syntax errors remain or if you are using a different editor, then any syntax
errors will be caught by the compiler every time you build the project. It is very diffi-
cult for a syntax error to slip by into production code.

272 | Chapter 8: Errors, Exceptions, and Bugs, Oh My!

When the compiler finds a syntax error, an error message containing
the location of the error and a terse explanation will be displayed in
the Output window of the IDE. If the error is caused by something
such as an unbalanced parenthesis or bracket, or a missing semicolon
in C#, then the actual error may not be on the reported line.

More problematic, and often more difficult to catch, are errors in logic. The program
successfully compiles and may run perfectly well most of the time, yet still contain
errors in logic. The very hardest bugs to find are those that occur least often. If you
can’t reproduce the problem, it is terribly difficult to find it.

While you will try to eliminate all the bugs from your code, you do want your pro-
gram to react gracefully when a subtle bug or unexpected problem rears its ugly
head.

Unhandled Errors
To demonstrate what happens if there is no error handling in place, modify the sam-
ple project from this chapter to force some errors.

Go to the code-behind file. Find the For loop that populates the DropDownList in the
Page_Load method. Change the test expression to cause an error intentionally at run-
time. For example, change the line:

For i As Integer = 0 To books.GetLength(0) - 1

to:

For i As Integer = 0 To books.GetLength(0) + 1

When this code runs, it will try to add more items than have been defined in the
books array, thus causing a runtime error. This is not a subtle bug, but it serves to
demonstrate how the system reacts to runtime errors.

When you run this example in the IDE, execution will stop at the line causing the
error, as shown in Figure 8-17, preventing you from seeing the error page. Just press
F5 to continue running, or click the Debug ➝ Continue menu item to get to the error
page.

Let the program run. As expected, an error is generated immediately, and the generic
ASP.NET error page is displayed to the user, as shown in Figure 8-18.

This generic error page is actually fairly useful to the developer or technical support
person who will be trying to track down and fix any bugs. It tells you the error type,
the line in the code that is the approximate error location, and a stack trace to help in
tracking down how that line of code was reached.

You can replace this detailed error page with a custom error page and can control
who gets to see what by setting the mode attribute of the CustomErrors element in the
configuration file, as will be described next.

Error Handling | 273

Application-Wide Error Pages
The previous section showed the default error pages presented for unhandled errors.
This is fine for a developer, but if the application is in production, it would be much
more aesthetically pleasing if the user were presented with an error page that looked
less intimidating.

The goal is to intercept the error before it has a chance to send the generic error page
to the client. This is done on an application-wide basis by modifying the configura-
tion file, web.config.

The error-handling configuration information in web.config is contained within the
<customErrors> section within the <system.web> section, which is contained within the
<configuration> section. A typical <customErrors> section will look like Example 8-5.

Figure 8-17. When the program encounters a runtime error, the IDE stops execution and points out
the problem.

Example 8-5. Custom error section fromweb.config

<?xml version="1.0"?>
<configuration>

274 | Chapter 8: Errors, Exceptions, and Bugs, Oh My!

There are two possible attributes for the <customErrors> section: defaultRedirect
and mode.

defaultRedirect is an attribute that contains the URL of the page to display in the
case of any error not otherwise handled. In Example 8-5, the defaultRedirect page is
CustomErrorPage.htm. This example is a simple HTML page contained in the same
folder as the rest of the web site. The contents of this page are shown in Example 8-6.

 <system.web>
.
.
.
 <customErrors
 defaultRedirect="CustomErrorPage.htm"
 mode="On"
 />

Figure 8-18. When you run an application with a logic error, the application may still compile, but
fail at runtime. In that case, you’ll see a generic error page like this one.

Example 8-6. CustomErrorPage.htm

<html>
 <head>
 <title>Error Page</title>
 </head>

Example 8-5. Custom error section fromweb.config (continued)

Error Handling | 275

If the custom error page to be displayed is not in the same folder as the rest of the
application, then you need to include either a relative or a fully qualified URL in the
defaultRedirect attribute.

mode is an attribute that enables or disables custom error pages for the application. It
can have three possible values:

On
Enables custom errors for the entire application.

Off
Disables custom errors for the entire application.

RemoteOnly
Enables custom errors only for remote clients. Local clients will see the generic
error page. In this way, developers can see all the possible error information, but
end users will see the custom error page.

Edit your web.config file to look like Example 8-5, adding the customErrors element
inside the <system.web> tags; then add a new item to your web site called Custom-
ErrorPage.htm. The full markup for this web page is listed in Example 8-6. Run the
program. Instead of Figure 8-18, you will see something like Figure 8-19.

 <body>
 <h1>Sorry - you've got an error.</h1>
 </body>
</html>

Figure 8-19. CustomErrorPage resulting from unhandled error with custom errors configured in
web.config.

Example 8-6. CustomErrorPage.htm (continued)

276 | Chapter 8: Errors, Exceptions, and Bugs, Oh My!

Obviously, you’ll want to put more information on your custom error page, such as
instructions or contact information, but you get the idea. Showing dynamic informa-
tion about the error on the custom error page is also possible.

You can even use a different custom error page for different errors. To do this, you
need to include one or more <error> subtags in the <customErrors> section of web.
config. For example, modify web.config to look like the code snippet in Example 8-7.

Copy CustomErrorPage.htm three times and rename the copies to the filenames in
the <error> subtags in Example 8-7. Do this by right-clicking CustomErrorPage.htm
in the Solution Explorer and selecting Copy. Then, right-click the web site root
folder and select Paste. Next, right-click the new copy of the file and select Rename.
Edit the files so each displays a unique message.

Run the program again with the intentional error in the For loop still in place. You
should see something like Figure 8-20. The error number shown will likely be one of
the status codes listed back in Table 8-1.

Fix the error in the For loop so the program will at least load correctly. Then run the
program and click the hyperlink you put on the test page. That control is configured
to link to a nonexistent .aspx file. You should see something like Figure 8-21.

Be aware that you can only display custom error pages for errors generated on your
server. So, for example, if the hyperlink had been set to a nonexistent page—say,
http://TestPage.comx (note the intentional misspelling of the extension)—you will
not see your custom error page for error 404. Instead, you’ll see whatever error page
for which the remote server or your browser is configured. Also, you can only trap
the 404 error if the page you are trying to link to has an extension of .aspx.

Page-Specific Error Pages
You can override the application-level error pages for any specific page by modifying
the Page directive at the top of the .aspx file.

Example 8-7. Custom error code snippet with <error> subtags from web.config

<?xml version="1.0"?>
<configuration>

 <system.web>
.
.
.
 <customErrors mode="On"
 defaultRedirect="CustomErrorPage.htm">
 <error statusCode="400" redirect="CustomErrorPage400.htm"/>
 <error statusCode="404" redirect="CustomErrorPage404.htm"/>
 <error statusCode="500" redirect="CustomErrorPage500.htm"/>
 </customErrors>

http://TestPage.comx

Error Handling | 277

Modify the Page directive in Default.aspx file of the DebuggingApp so it appears as
follows (note the highlighted ErrorPage attribute, which has been added):

<%@ Page Language="VB" AutoEventWireup="false" CodeFile="Default.aspx.vb"
 Inherits="_Default" Trace="false"

ErrorPage="PageSpecificErrorPage.aspx" %>

If there is an error on this page, the PageSpecificErrorPage.aspx page will be dis-
played. If there is an application-level custom error page defined in web.config, it will
be overridden by the Page directive.

Figure 8-20. Custom error page for Error 500.

Figure 8-21. Custom error page for Error 404.

278 | Chapter 8: Errors, Exceptions, and Bugs, Oh My!

Summary
• Tracing allows you to follow the course of your application through the various

stages of its life cycle, and examine its state as it runs. Tracing appends a great
deal of information to the bottom of the page for which tracing is enabled.

• To turn on tracing for a specific page, add the Trace attribute to the Page direc-
tive of the page you want to trace, and set it to True.

• You can insert your own information into the trace log with the Trace.Write and
Trace.Warn methods. They’re identical, except that Trace.Warn writes in red.

• The Trace.Write and Trace.Warn methods can accept a message string, a cate-
gory string and a message string, or a category string, a message string, and an
exception object.

• The Visual Studio and Visual Web Developer IDEs provide a complete suite of
debugging tools.

• A breakpoint stops execution of an application at a point that you specify, to
allow you to examine the state of the application at that point.

• When the application is paused at a breakpoint, you can inspect and change the
current values of variables and expressions.

• After you’ve paused at a breakpoint, you can step forward through the applica-
tion one line at a time, or you can step over or into method calls.

• The breakpoint window (available only in Visual Studio) shows you all the
breakpoints currently in your application.

• You can specify that an individual breakpoint will stop execution if a specific
condition is true, or only after being reached a certain number of times.

• You can specify what message is printed when a breakpoint is hit, or you can
specify a macro to run when the breakpoint is reached.

• When the application is stopped at a breakpoint, you can simply hover the
mouse cursor over objects and variables at that point to see their values and
properties.

• The Immediate debug window allows you to type a variable, property, or expres-
sion, and see or modify its current value.

• The Locals window shows the variables in the current context, and their current
values.

• The Watch window is a subset of the Locals window, but it shows only those
variables that you specify.

• Syntax errors are errors that violate the rules of the programming language. The
IDE checks for syntax errors as you write your code, and underlines any code
element that doesn’t fit. If you attempt to run an application with a syntax error,
the application will not run, and the IDE will pop up an informational box at the
point of the error.

Summary | 279

• Logic errors occur when the code is syntactically correct, but doesn’t behave as
intended. These errors are more difficult to deal with because the IDE cannot
find them for you. You need to write code to handle those errors so they don’t
stop your application, or at least provide a way for the application to fail with a
minimum of surprise to the user.

• ASP.NET provides default error pages that appear when an unexpected error
occurs in the application. These pages have useful information for developers,
but not so much for users.

• To prevent the user from seeing the default error pages, you can define custom
pages to handle errors.

• When you want to use custom error pages, you have to add a <customErrors>
section to the web.config file, and set the mode attribute to either On or
RemoteOnly.

• You can create specific error pages for individual types of errors. Create a new
<error> section within the <customErrors> section, and specify the statusCode
attribute for which you want to create a custom page.

• If you want to specify an error page to be used on one specific page of your site,
instead of the entire application, add the ErrorPage attribute to the Page direc-
tive, and specify the location of the custom error page.

You’ve spent the last couple of chapters behind the scenes, figuring out ways to
enhance your site and the user’s experience that are totally invisible to the user (or
should be, if everything goes well). In the next chapter, it’s time to get back to things
that the user can see. You’ll learn how to change the entire visual appearance of your
site with themes and skins, and how to let the user choose his or her preference for
viewing your site. Of course, if users are going to customize their experiences, they’ll
need to identify themselves to you. Or maybe you don’t want just anybody coming
into your site and changing things around. That means you’ll need some security
measures, which is the first thing we’ll talk about in the next chapter.

280 | Chapter 8: Errors, Exceptions, and Bugs, Oh My!

B R A I N B U I L D E R

Quiz
1. How do I turn on tracing for a specific page?

2. What is the difference between the Trace.Write and Trace.Warn methods?

3. What are the three possible arguments to the Trace.Write and Trace.Warn
methods?

4. How do you set a breakpoint in your code?

5. How do I determine the current value of a variable when the application is
stopped at a breakpoint?

6. How do I modify the value of a variable while the application is running?

7. What information can you find in the Locals window?

8. What is the difference between syntax and logic errors?

9. What setting do you need to specify before you can use a custom error page?

10. How do you specify that a specific page should use its own custom error page
instead of the application-wide pages?

Exercises
Exercise 8-1. Download the file Exercise 8-1 from this book’s web site. This applica-
tion is a part of a page for an online men’s clothing store. At the moment, this appli-
cation runs correctly. Enable tracing on this page, and insert a warning into the trace
that indicates when the execution is in the event handler for the drop-down list.

Exercise 8-2. Download the file Exercise 8-2 from this book’s web site. This applica-
tion is similar to the first, but it has a problem. Instead of showing the name of the
product in the details pane, some other text is showing up instead, as shown in
Figure 8-22. Find the problem and resolve it.

Exercise 8-3. Same site, different problem. Download the file Exercise 8-3 from this
book’s web site. In this case, the product details don’t show up at all, as shown in
Figure 8-23. Find the problem and resolve it.

Exercise 8-4. Download the file Exercise 8-4 from the book’s web site. The product
page now has a hyperlink for users to get customer assistance (and it seems like
they’ll need it). Unfortunately, the customer assistance page hasn’t been created yet.
Create a custom error page to handle this error, and give the user the option to
return to the product page.

Exercises | 281

Figure 8-22. The problem in Exercise 8-2.

Figure 8-23. The problem in Exercise 8-3.

282

Chapter 9CHAPTER 9

Security and Personalization 9

Nearly everything you’ve learned about so far in this book has been aimed at increas-
ing the interactivity of your web sites—giving the user control over his or her experi-
ence with your site. But why should that interactivity just be limited to data? With
ASP.NET 2.0, you can allow readers to customize the appearance of your site based
on their preferences. You can allow users to identify themselves to your site, so that
you can save their preferences and restore them whenever they visit. Of course, hav-
ing users log in is also useful for security reasons. You can restrict parts of your site
to access just by certain users or groups.

In this chapter, you’ll build a functional site with multiple pages, some public and
some not. You’ll use the ASP.NET login controls, and see just how easy they are to
use and customize to your needs. You’ll then adapt the site to restrict pages to spe-
cific roles, and see how to manage your users. You’ll enhance your site by letting
users enter personal information that you’ll store and produce on demand, and
you’ll learn how to provide content for users who’d rather remain anonymous.
Finally, you’ll modify the appearance of the controls on your site with themes, and
you’ll see how you can let users set their own themes, and retain those settings with
their other personal information.

Forms-Based Security
Many Internet sites require that users “log in.” This allows the site both to restrict
access to “members” and also allows the user to personalize the site to their individ-
ual needs. These include allowing the site to remember the user’s preferences, pro-
file information, shopping cart contents, and so forth.

Forms-based security is a common technique for validating that the person who is
trying to log in to a web site is who they say they are. It presents the user with a web
page, or form, containing fields that the user can fill in and submit. Server-side code
processes the credentials submitted, such as the username and password, and deter-
mines whether the user can proceed.

Forms-Based Security | 283

Not that long ago, creating the “plumbing” of logging in was a tedious and time-con-
suming job: You had to create membership tables, create the ability to maintain
secure passwords, ensure authorization on each page, assign users to “roles” (such as
guest, member, owner, wizard, and more), and so on. You also had to write all the
controls to allow the user to log in, to recover passwords, to change passwords, and
so forth.

With ASP.NET 2.0 and AJAX, all of that has become wonderfully simplified.

Creating Users with the WAT
Visual Studio 2005 offers a wizard called the Web Site Administrative Tool, abbrevi-
ated the WAT. This tremendously powerful tool is hidden under the menu choice
Website ➝ ASP.NET Configuration for no apparent reason.

If the Web Site Administration Tool were a true acronym, it would be
WSAT, but that is very hard to say if English is your first language.
Interestingly, the name itself reflects Microsoft’s apparent ambiva-
lence, (reflected within VS/VWD) of whether web site is one word or
two. It is used as one word in the menus, but as two in the WAT.
We’ve tried to use it as two words throughout this book, except when
we don’t.

To try it out, create a new web site called FormsBasedSecurityWAT and then follow
these menu selections. The WAT should open in its own browser window.

Select Website ➝ ASP.NET Configuration. Click the Security tab (or the Security
link), as shown in Figure 9-1. (Note: “Web Site” is two words in the heading!)

This screen is used for interactively creating users, roles, and access rules. By default,
the authentication type is Windows, which means that all user authentication and
password management is handled by Windows using your normal Windows sign-on
account. This can be quite handy for an intranet web site (a web site used only
within a single company).

Because we are concerned with Internet accounts (accounts open to the world),
change the authentication type to Forms-based. To do so, click the “Select authenti-
cation type” link under the Users heading, indicated in Figure 9-1.

This brings up the screen shown in Figure 9-2. Select the radio button labeled “From
the internet,” and then click the Done button.

Please note the schizophrenia of this tool: To get to the WAT, you
click “ASP.NET Configuration”; to get forms-based security, you click
“From the internet”—you never quite click what you expect, but it
does all make sense, sort of.

284 | Chapter 9: Security and Personalization

After you click the Done button, you return to the previous page, but the display
under Users has changed, as shown in Figure 9-3. You can create users, manage
existing users, or change the authentication type back to Windows.

Click the Create User link to create your first user, as shown in Figure 9-4. Be sure
the Active User checkbox remains checked, or else the user will not be able to log
into the web site.

Figure 9-1. Web Site Administration Tool (WAT) is hidden under the Website menu. On the
Security screen, you’ll find a link to switch from Windows security to forms-based security.

Click here to switch to
Forms and authentication

Forms-Based Security | 285

Figure 9-2. Select “From the internet” to change the Authentication type from Windows-based
security to forms-based security.

Figure 9-3. After you change the security type to forms-based, you’ll see the number of existing
users on the Security tab. You can create new users or manage existing ones from here.

Forms based

Windows based

286 | Chapter 9: Security and Personalization

By default, passwords must be strong, which Microsoft defines as: at
least seven characters in length and consisting of both alphanumeric
and nonalphanumeric characters. So danh would not be strong, nor
would danh123, but danh123! would be.

The strong password requirements may differ in other security areas,
such as requiring both upper- and lowercase letters, or numbers. For
more information, go to www.msdn.microsoft.com and search for
strong passwords.

The CreateUserWizard control, which you will see later in this chap-
ter, has a PasswordRegularExpression property that allows you to sub-
stitute your own password requirements. With it, you can dictate how
“strong” your passwords need to be.

Creating at least one user through the WAT sets up a Security database with all the
tables that ASP.NET’s forms-based security system will need to support your use of
the forms-based security system.

Your web.config file will be modified by the WAT to include the following line under
<system.web>:

 <authentication mode="Forms" />

In addition, a file-based database will be created in the App_Data directory of your
application, named ASPNETDB.MDF. To view this, click View ➝ Server Explorer to
open the Server Explorer Window. If you’re using VWD, click View ➝ Database

Figure 9-4. Creating a user in the WAT is simple; just enter the pertinent information and click
“Create User.”

Strong password required

Used for password recovery

http://www.msdn.microsoft.com

Forms-Based Security | 287

Explorer instead. If you don’t already see ASPNETDB.MDF, then within that win-
dow, right-click Data Connections and select “Add Connections….” This will open
the Add Connection dialog box, shown in Figure 9-5.

I’ve numbered five of the buttons. Let’s take them in order.

First, click the button numbered 1 to change the Data Source to the Data File you
just created. This will open a new modal dialog (Change Data Source). From the
drop-down, choose Microsoft SQL Server Database File, as shown in Figure 9-6.

Clicking OK will return you to the Add Connection dialog box.

We’re up to the button labeled 2. Click the Browse button and navigate to the App_
Data directory for your new application, and then click the mdf file that the WAT
created for you.

Leave the radio button (hidden in the figure by the Test Connection Succeeded dia-
log box) set to Use Windows Authentication. Don’t be confused; you are allowing
Windows Authentication to get to the security database only, not to get to the appli-
cation you are building.

For step 3, click “Test Connection.” If all is right, the modal dialog box, unfortu-
nately named “Microsoft Visual Studio,” will open saying that your test connection
succeeded. Click the OK button (4), which will return you to the Add Connection
button, and you can click OK (5).

Figure 9-5. In the Add Connection dialog box, click the buttons in the order shown.

1

2

3

4

5

288 | Chapter 9: Security and Personalization

Visual Studio’s Server Explorer window (or VWD’s Database Explorer) will now
show aspnetdb.mdf under DataConnections with a plus sign next to it. Click the plus
sign to expand the database, and click the plus sign next to “Tables” to see all the
tables in the Security database created for you, as shown in Figure 9-7.

Figure 9-6. The first step in accessing the Security Database is selecting a Microsoft SQL Server
Database File as the Data Source.

Figure 9-7. Expanding the tables in the Security Database shows all the tables that the Security
Database created automatically.

Forms-Based Security | 289

You can look at the data in any of these tables by right-clicking the table name and
selecting “Show Table Data.”

Managing Users Programmatically
You saw how to create users using the WAT. Now you will add users programmati-
cally, from within your web site. Use the web site created previously in this chapter,
FormsBasedSecurityWAT. You will add two new pages: a welcome page that dis-
plays different information depending on whether the user is logged in, and a login
page that allows a user to log in.

Creating user accounts

In a secured web site, before a user can log in, an account for that user must be cre-
ated. This can be done in the WAT, as you have seen, but accounts can also be cre-
ated from within the running program.

Look at the web site created previously in this chapter, FormsBasedSecurityWAT.
Delete Default.aspx by selecting it in the Solution Explorer and pressing the Delete
key.

Add a new page called CreateAccount.aspx. Make sure the checkbox for “Place code
in separate file” is checked, and the “Select master page” checkbox is not checked.

Switch to Design view and drag a CreateUserWizard control from the Login section of
the Toolbox onto the page, as shown in Figure 9-8.

The CreateUserWizard control prompts the user for a username, a password (twice),
an email address, and a security question and answer. All of this is configurable
through the control declaration created in the .aspx file for you, through the Proper-
ties window, or more commonly, through the Smart Tag, indicated in Figure 9-8.

Click the control and find the ContinueDestinationPageUrl property in the Proper-
ties window. Click in the cell next to the property, then on the ellipses (…) button
that appears in that cell. The Select URL dialog box will appear. Choose
CreateAccount.aspx—that is, the page itself—so that you will be brought back to the
same page after a new user is created.

Set the title of the page by clicking the Design window of the page, finding the Title
property in the Properties window, and changing it from Untitled Page to Create
User.

Finally, set the CreateAccount.aspx as the startup page by right-clicking the page in
the Solution Explorer and selecting Set As Start Page. The resulting page is shown in
Figure 9-9.

290 | Chapter 9: Security and Personalization

Fill in all the fields (with different values than the user you created before) and click
Create User. The new user account will be created and a confirmation screen will be
displayed. Click the Continue button on the confirmation screen, which will bring
you right back to the CreateAccount page.

Add a few more accounts, and then stop the application. For these examples, we
added the following four users:

dhurwitz
jliberty
jmontana
tbrady

If you would like, examine the database tables to ensure that the new members have
been added.

Creating a welcome page

Close the browser if it is open, and then add a new page to the web site called
Welcome.aspx. Switch to Design view and drag a LoginStatus control from the Login
section of the Toolbox onto the form.

Figure 9-8. CreateUserWizard control showing the Smart Tag.

CreateUserWizard control Smart tag

Forms-Based Security | 291

This control looks like a hyperlink with the text Login. The Smart Tag for the con-
trol indicates that you are looking at the template for when the user is not logged in,
as shown in Figure 9-10. You can use the drop-down in the Smart Tag to see the link
and text for Logged In status.

You can use the Properties window to change the properties of the LoginStatus con-
trol—for example, to change the displayed text for the logged-in status, LoginText, or
the logged-out status, LogoutText.

It would be nice to see who is logged in, or other content, based on whether the
current user is logged in or not. To do this, drag a LoginView control from the Login
section of the Toolbox onto the page. Notice that this control has two views:
AnonymousTemplate and LoggedInTemplate. The template that will be displayed
depends on whether the user has logged in—the AnonymousTemplate is presented to
users who aren’t logged in.

Click the Smart Tag and confirm that the view is set to AnonymousTemplate. Type
some text in the box to display when the user is not logged in, as shown in
Figure 9-11.

Click the Smart Tag and select the LoggedInTemplate. Drag a LoginName control into
the box to display the username of the logged-in user along with some text, as shown
in Figure 9-12.

Figure 9-9. The CreateAccount.aspx page looks complicated, but it’s really just one control that
handles everything.

292 | Chapter 9: Security and Personalization

Figure 9-10. The LoginStatus control has a Smart Tag that you can use to customize the messages
for logged-in or logged-out users.

Figure 9-11. The LoginView control also has two separate templates, depending on whether the
user is logged in. Here it’s showing the Anonymous template, for logged-out users.

Figure 9-12. Here the LoginView control is showing the Logged In template, and using a
LoginName control to greet the user specifically.

Smart tag

Forms-Based Security | 293

Creating a login page

Add a new page to the web site called Login.aspx. It must be called exactly that or
the other controls will not know which page to call. Switch to Design view and drag
a Login control from the Login section of the Toolbox onto the page, as shown in
Figure 9-13. The Login control is the primary control your users will use to log in to
your site. To make the page look more professional, click the AutoFormat menu
item in the Smart Tag, and pick one of the predefined formats.

Make sure that the Welcome page is the Start page and then run the application. The
Welcome page will display its “Not Logged In” message, as shown in Figure 9-14.

Click the link to go to the login page. Enter the user name and password of one of
the users you created previously. If you enter the credentials correctly, you will see a
page similar to that shown in Figure 9-15.

If you enter either of the credentials incorrectly, you will see the page shown in
Figure 9-16. You can re-enter the username and password to try again.

You can also use a PasswordRecovery control, which by default invalidates the cur-
rent password, and sends the user a new one. Using it properly requires you to con-
figure SMTP on your web server, which is slightly too complex for this example.

Figure 9-13. You can use the AutoFormat feature from the Smart Tag of the Login control to give
your page a more professional appearance.

Login control Smart tag

294 | Chapter 9: Security and Personalization

Figure 9-14. When you first see the Welcome page, you’re not logged in, so you’re greeted the same
as any other user.

Figure 9-15. Once you log in successfully, the Welcome Page becomes friendlier.

Forms-Based Security | 295

Roles
A role is a specific set of permissions that has been given a name. Users can be mem-
bers of one or more roles. For example, a user may be an Administrator, which gives
them permission to change data; or a Guest, which does not give them permission to
change data. Or a user can be a member of both the Administrator and the User
roles, in which case that person will have all the permissions of both roles.

To see this in action, copy the previous example FormBasedSecurityWAT to a new
web site—call it SecurityRoles.

Set Welcome.aspx as the Start page and run the site to make sure it still works and
you can log in.

Use the WAT to enable roles and add the existing users to those roles. Open the
WAT by clicking Website ➝ ASP.NET Configuration. When the WAT opens, click
the Security tab or link (they are equivalent) to go to the Security page.

There are three management areas across the page, as shown in Figure 9-17. Under
the Roles category, there is an “Enable Roles” link, indicated in Figure 9-17. Click
this link to enable roles.

The link will change to read “Disable Roles” and the link below, “Create or Manage
roles,” will become available. Click that link to create some roles.

Figure 9-16. If you don’t log in successfully, the Login control provides a message telling you so.
This message is generated automatically by the control.

296 | Chapter 9: Security and Personalization

Enter the name of your first role—Manager—in the text box, as shown in Figure 9-18;
then click the Add Role button.

Add two more roles, SalesRep and Customer. The screen will now list all the available
roles, as shown in Figure 9-19.

Figure 9-17. Click the Enable Roles link on the Security Page of the Web Site Administration Tool
(WAT) to enable roles.

Figure 9-18. Creating a role called Manager in the WAT is simple—just click the Create or Manage
Roles link, and create some new roles.

Click here to enable roles

Forms-Based Security | 297

There are links for each role for deleting or otherwise managing the role. The next
thing you need to do is add some users to the roles. Under the Add/Remove Users
column header, click the Manage link for the Manager role, to bring up a search
screen. You can search by username or e-mail address, or, as shown in Figure 9-20,
you can click one of the letters to list all the users whose username begins with that
letter.

As you can also see in Figure 9-20, we have checked User Is In Role for jliberty to be
a member of the Manager role, but jmontana is not a member of that role.

You can also click the Back button at the bottom-right corner of the screen to move
back to the Security page and click the Manage Users link under the Users category
shown in Figure 9-17, to bring up the user management screen shown in Figure 9-21.

Click the Edit roles link next to the dhurwitz name to get a series of checkboxes for
adding dhurwitz to any of the roles. In Figure 9-22, dhurwitz has been added to the
Manager and SalesRep roles.

While on this page, also add jmontana and tbrady to the Customer role.

Figure 9-19. All the available roles are displayed in the WAT.

298 | Chapter 9: Security and Personalization

Restricting Access
Although you have set the startup page of the ongoing example to be Welcome.aspx,
there is nothing to prevent a user, malicious or otherwise, from entering the URL of a
specific page, such as CreateAccount.aspx, into the address box of a browser.

To see this, run the current example, with Welcome.aspx set as the start page, as you
have been doing all along. The browser will open Welcome.aspx, with an address
similar to the following:

http://localhost:1296/SecurityRoles/Welcome.aspx

You have probably noticed that every time you run a web site from
within the IDE, the URL displayed in the browser address box con-
tains localhost and a number separated by a colon. localhost refers to
the local machine serving a web page to itself. The number is the port,
or address into a server. Every time the IDE runs a web site, it chooses
at random a different port to use.

Some port numbers are referred to as well-known ports, meaning that
they have a standardized usage. For example, port 80 is commonly
used for HTTP requests (i.e., web sites) and ports 20 and 21 are com-
monly used for FTP. The port numbers from 1 through 1024 are
reserved for well-known ports.

Figure 9-20. You can easily search for users to add to a given role in the Add/Remove Users page.

http://localhost:1296/SecurityRoles/Welcome.aspx

Forms-Based Security | 299

Edit this address to point instead to the CreateAccount page, as follows:

http://localhost:1296/SecurityRoles/CreateAccount.aspx

That page will open, regardless of your credentials (are you logged in; what roles are
you in?).

Figure 9-21. Instead of adding users to roles from the roles page, you can use this screen for
managing users in the WAT.

Figure 9-22. When you click the Edit roles link, the page allows you to add a user to roles.

http://localhost:1296/SecurityRoles/CreateAccount.aspx

300 | Chapter 9: Security and Personalization

This can lead to obvious security problems, providing access to unauthorized users.
It can also cause database corruption or exceptions being thrown when your data-
base code assumes that you will have a valid user id and you have none.

To avoid all this, it is good practice to check the login status of the user in the Page
Load event of every page in the web site. If the user is not logged in (or is not in the
correct role), you can then redirect the user to the appropriate page (often the login
page).

This security is not necessary in the normal start page of the web site,
Welcome.aspx in the example, because the LoginStatus control on the
page already takes care of this. It may also not be necessary in many
“open” pages on public sites where you may not want to force visitors
to “log in” until it is absolutely necessary (to retrieve their own person-
alized data or to place an order).

Testing for login status

To see how checking of credentials might be accomplished, open the code-behind
page for CreateAccount, CreateAccount.aspx.vb. In the Class Name drop-down at
the top left of the editing window, select (Page Events), and in the Method Name
drop-down at the top right of the editing window, select the Load event. This will
insert an empty code skeleton for the Page_Load event handler.

Type the following code inside the Page_Load method:

If User.Identity.IsAuthenticated = False Then
 Response.Redirect("Login.aspx")
End If

Now run the application. Before logging in, edit the page address in the browser to
go to CreateAccount.aspx. Instead of CreateAccount opening, you will be immedi-
ately taken to the login page.

If you enter a valid username and password at this point, the Login
control will try to redirect to Default.aspx, a page that does not exist.
Instead, set the DestinationPageUrl property of the Login control to
one of the pages in the web site, such as Welcome.aspx. Then on a suc-
cessful login, the user will be redirected to that page.

On the other hand, if you run the web site and log in, and then edit the browser
address to open CreateAccount, you will in fact go to that page.

Testing for role-based authentication membership

You can also limit access to pages based on the role, or roles, to which the current,
logged-in user belongs.

Forms-Based Security | 301

Add another page to the SecurityRoles web site called ManagersPage.aspx. As the
name implies, this page will be accessible only to managers. To keep the example
simple, for now this page will have only an identifying heading and a button to
return to the Welcome page, shown in bold in Example 9-1. You can do this in either
Source view or Design view.

Switch to Design view and double-click the Return to Welcome button to open up
an event handler for Click event. Add the following highlighted line of code:

Protected Sub btnWelcome_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles btnWelcome.Click
 Response.Redirect("Welcome.aspx")
End Sub

While you are at it, add a button to the Welcome page for navigating to the Man-
ager’s Page, as shown in Figure 9-23. Set the ID of the button to btnManagersPage,
because you will be referring to the button in code elsewhere, and set its Enabled
property to False. In a moment, you will add some code to the Page_Load event han-
dler to enable or disable the button depending on the login status.

Double-click that button in Design view and add the following highlighted line of
code to the Click event handler:

Protected Sub Button1_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles btnManagersPage.Click
 Response.Redirect("ManagersPage.aspx")
End Sub

Example 9-1. The markup for the ManagersPage.aspx

<%@ Page Language="VB" AutoEventWireup="false" CodeFile="ManagersPage.aspx.vb"
Inherits="ManagersPage" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" >
<head runat="server">
 <title>Untitled Page</title>
</head>
<body>
 <form id="form1" runat="server">
 <div>
 <h1>Manager's Page</h1>
 <asp:Button ID="btnWelcome" runat="server"
 Text="Return to Welcome" />
 </div>
 </form>
</body>
</html>

302 | Chapter 9: Security and Personalization

Next, add an event handler for the Page Load event. Then add the following high-
lighted code to run every time the page loads:

Protected Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 If User.Identity.IsAuthenticated = True Then
 btnManagersPage.Enabled = True
 Else
 btnManagersPage.Enabled = False
 End If
End Sub

Including both an If and an Else clause ensures that the Enabled state of the button
will always be what you want, regardless of the circumstances.

Run the app. The Welcome page opens with the Login link and contents of the
AnonymousTemplate displayed, and the Manager’s Page button is disabled.

Log in as a user in the managers role, say dhurwitz, and the button will become
enabled. Click that button to move to the Manager’s Page; then click the button on
that page to return to the Welcome page.

There is still a problem with this application, however: If you log in with one of the
usernames that are not in the Manager’s role, such as tbrady, you still are allowed to
go to the Manager’s page. Let’s fix this.

Figure 9-23. Add a button to the Welcome page in Design view, for navigating to the Manager’s
page.

Forms-Based Security | 303

Go to the code-behind for the Manager’s page, ManagersPage.aspx.vb. Create an
event handler for the Page Load event. Enter the following highlighted code to the
event handler:

Protected Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 If User.IsInRole("Manager") = False Then
 Response.Redirect("NoPrivs.aspx")
 End If
End Sub

This code will redirect to a page called NoPrivs.aspx if the current user is not a
member of the Manager role. So, create that page, making it very similar to
ManagersPage.aspx, with only a heading, some text, and a button to redirect back to
the Welcome page, as shown in Figure 9-24.

Double-click the button to open an event handler for the Click event and enter the
following highlighted line of code:

Protected Sub btnWelcome_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles btnWelcome.Click
 Response.Redirect("Welcome.aspx")
End Sub

Now when you run the app, if you log in with a username that is a member of the
Manager role, you can navigate to the Manager’s page. Otherwise, you cannot get to
the Manager’s page; you are directed instead to NoPrivs.

Figure 9-24. The NoPrivs page in Design view. This is the page where users will be redirected if
they try to access a page for which they do not have permissions.

304 | Chapter 9: Security and Personalization

In a real application, it would make more sense to only enable the
Manager’s Page button on the Welcome page if the user were a mem-
ber of the Manager role, not simply logged in. However, then we
would not have an easy way to demonstrate how to restrict access to a
page based on the role of the current user.

Personalization
Personalization allows the user to modify your site to reflect his or her own tastes. It
also allows you to keep track of the user’s “progress” through a sequence of steps or
selections made on a page from one visit to another. Many sites use personalization
to create persistent “wish lists,” “shopping carts,” and so forth.

This used to be a huge and complicated job—keeping track of a user’s set of prefer-
ences and the state of a user’s personal information. Fortunately, that is all made
easier now with ASP.NET 2.0.

Profiles
Copy the previous example, SecurityRoles, to a new web site called SitePersonaliza-
tion. Set Welcome.aspx as the start page and run it to make sure everything still works.

One of the easiest ways to personalize a site is to define profile information that you
will maintain for each user. Profile information can include such simple data as the
user’s real name, address, and telephone numbers, or, as you’ll see later, it can
include more complex user-defined data.

Simple data types

To use profiles, you have to make some modifications to your web.config file for the
project. The first step is adding a new section called <profile>, setting the enabled
property to true, and specifying defaultProvider as AspNetSqlProfileProvider. The
defaultProvider property holds the data for the profiles; AspNetSqlProfileProvider is
the built-in provider for ASP.NET.

Then you need to modify web.config to indicate which pieces of profile information
to save. You add a <properties> section to the <profile> declaration, and then use
the <add> attribute to add the names of any profile data you want to save. Add the
highlighted lines in Example 9-2 to your web.config.

Example 9-2. Modifications to web.config for enabling profiles

<?xml version="1.0"?>
<configuration xmlns="http://schemas.microsoft.com/.NetConfiguration/v2.0">
 <appSettings/>
 <connectionStrings/>
 <system.web>
 <roleManager enabled="true" />

Personalization | 305

Your web.config file may look somewhat different depending on your
machine configuration and the databases you have installed. Also,
boilerplate comments and lines unrelated to this topic have been
removed from Example 9-2.

The configuration shown in Example 9-2 causes ASP.NET to create storage for four
pieces of information: first and last name, phone number, and birth date. The default
storage type is String. Notice, however, that you are storing the birth date as a
DateTime object.

You can gather this personalization information any way you like. For this example,
open Welcome.aspx and switch to Design view. Click the Smart Tag of the Login-
View control and select the LoggedInTemplate view, as shown in Figure 9-25.

Now drag a HyperLink control from the Toolbox onto the LoginView control. Set its
Text property to “Add Profile Info” and the NavigateUrl property to ProfileInfo.
aspx (which you will create shortly). The Design view will look something like
Figure 9-26.

 <compilation debug="true" strict="false" explicit="true"/>
 <profile enabled="true" defaultProvider="AspNetSqlProfileProvider">
 <properties>
 <add name="lastName" />
 <add name="firstName" />
 <add name="phoneNumber" />
 <add name="birthDate" type="System.DateTime" />
 </properties>
 </profile>
 <pages>
 <!-- stuff omitted for brevity --!>
 </pages>
 <authentication mode="Forms"/>
 </system.web>
</configuration>

Figure 9-25. Select the LoggedInTemplate view of the LoginView control. You’re currently
welcoming the user by using the UserName, but you’ll change that.

Example 9-2. Modifications to web.config for enabling profiles (continued)

306 | Chapter 9: Security and Personalization

Now create the page for gathering the profile information referred to in the
NavigateUrl property of the HyperLink, ProfileInfo.aspx. Remember to check the box
to place the code in a separate file. Add a table for layout to the page, and within the
table, add labels and TextBoxes, as well as a Save button, as shown in Design view in
Figure 9-27.

Figure 9-26. Add the HyperLink control to the LoginView control to link to the page where you’ll
gather profile information.

Figure 9-27. The ProfileInfo page, shown here in Design view, is where users will enter their profile
information.

txtFirstName

txtLastName

txtPhone

txtBirthDate

btnSave

Personalization | 307

All that remains to be done is to add an event handler for the Save button. Double-
click the Save button in Design view to open up a code skeleton for the Click event
handler. Add the following highlighted code:

Protected Sub btnSave_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles btnSave.Click
 If Profile.IsAnonymous = False Then
 Profile.lastName = Me.txtLastName.Text
 Profile.firstName = Me.txtFirstName.Text
 Profile.phoneNumber = Me.txtPhone.Text
 Profile.birthDate = CType(Me.txtBirthDate.Text, System.DateTime)
 End If
 Response.Redirect("Welcome.aspx")
End Sub

Until the web site is built for the first time, the IDE will think all these Profile proper-
ties are invalid and underline them with the dreaded squiggly line. Either click the
Build ➝ Build Web Site menu item or just run the page.

The first line you added uses the IsAnonymous property of the Profile object. You
can’t set the profile properties if the user isn’t logged in, so you need to check that
first. The Profile object has properties that correspond to the properties you added
in web.config. To test that the Profile object has, in fact, stored this data, add a
Panel control to the bottom of the Welcome page, as shown in Figure 9-28. Set the
ID property of the Panel control to pnlInfo and set its Visible property to False, so
that it will not normally display. The Labels within the Panel control should be
named lblFullName, lblPhone, and lblBirthDate. You should also set the Text prop-
erties of these Labels as shown in Figure 9-28.

Figure 9-28. WelcomePage in Design view showing the panel for displaying the Profile information.

Panel control

308 | Chapter 9: Security and Personalization

The panel has a table with three rows, and each row has a Label control that is ini-
tialized to say that the value is unknown (this is not normally needed, but is included
here to ensure that the data you see is retrieved from the Profile object). When the
page is loaded, the event handler checks to see if you have Profile data for this user
and, if so, you assign that data to the appropriate controls and set the Visible prop-
erty of pnlInfo to True.

You’ll need to add a bit of code to the code-behind for the Welcome page, Welcome.
aspx.vb, so that when the page loads, it will check to see if you have a profile, and if
so, it will make the panel visible. You have previously created an event handler for
the Page Load event for this page and added some code, so add the highlighted code
from Example 9-3 to that pre-existing event handler.

When you start the application, you are asked to log in. Once logged in, a new
hyperlink appears: Add Profile Info. This was created by the hyperlink you added to
the LoggedInTemplate earlier. Clicking that link brings you to your new profile page,
as shown in Figure 9-29.

When you click Save and return to the Welcome page, the Page_Load event fires. The
Page_Load contains a three-part If statement:

If Not IsPostBack And _
 Profile.UserName IsNot Nothing And _
 Profile.IsAnonymous = False Then

All parts of the If statement evaluate True: This page is not loading as a result of a
postback, the UserName value in the profile is not Nothing, and the user is logged in,
and thus not anonymous.

Example 9-3. Page_Load for Welcome page showing how Profile information is retrieved and
displayed

Protected Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 If User.Identity.IsAuthenticated = True Then
 btnManagersPage.Enabled = True
 Else
 btnManagersPage.Enabled = False
 End If

 If Not IsPostBack And _
 Profile.UserName IsNot Nothing And _
 Profile.IsAnonymous = False Then
 Me.pnlInfo.Visible = True
 Me.lblFullName.Text = Profile.firstName & " " & Profile.lastName
 Me.lblPhone.Text = Profile.phoneNumber
 Me.lblBirthDate.Text = Profile.birthDate.ToShortDateString()
 Else
 Me.pnlInfo.Visible = False
 End If
End Sub

Personalization | 309

Your profile information is displayed, as shown in Figure 9-30.

If you are logged in but have not yet entered any profile data, the default values will
display, which are a blank string for string values and 01/01/0001 for the date.

Figure 9-29. ProfileInfo page for gathering profile information.

Figure 9-30. Profile information displayed on the Welcome page.

310 | Chapter 9: Security and Personalization

Complex data types

The information we’ve saved so far in the profile has been simple (built-in) data, but
of course you may want to save either user-defined types or collections. These are
considered “complex data types” and require just a bit of extra work, as you’ll see
with the Sports profile information in the very next example.

Close the browser and copy the previous example, SitePersonalization, to a new web
site called SitePersonalizationComplex. Set the Welcome page as the Start page and
run the site to verify that everything works.

In this web site, you will add a CheckBoxList control to the ProfileInfo page so users
can select their favorite sports and store them in a profile using a StringCollection
object.

Add a new property, called Sports, of type StringCollection, to the profile element in
web.config, as indicated by the highlighted line of code in Example 9-4.

Edit the page ProfileInfo.aspx. Add a row to the layout table above the Save button
and put a CheckBoxList control in that row—name it cblSports. In Design view, click
the Smart Tag of the CheckBoxList and click Edit Items…. Add several sports to the
ListItem Collection Editor dialog box, as shown in Figure 9-31.

— V B C H E AT S H E E T —
StringCollection Class

The StringCollection class, which is a member of the System.Collections.
Specialized namespace, is used to represent a collection of strings. Elements within
the collection can be accessed using a zero-based integer index. A number of methods
are provided for manipulating the collection, including the ability to add items, find
the index of specific items, and remove items either by index or by specifying the string.

Example 9-4. Profile element of web.config with a complex type added

<profile enabled="true" defaultProvider="AspNetSqlProfileProvider">
 <properties>
 <add name="lastName" />
 <add name="firstName" />
 <add name="phoneNumber" />
 <add name="birthDate" type="System.DateTime" />
 <add name="Sports"
 type="System.Collections.Specialized.StringCollection" />
 </properties>
</profile>

Personalization | 311

Now you need to enhance the event handler for the Save button to add the selected
items to the new Profile property, as shown in the highlighted code in Example 9-5.

You also need to create an event handler for the Page Load event, so the page will
open with the user’s up-to-date profile information. Create that event the same way
you did earlier, and then add the body of the method, highlighted in Example 9-6.

Figure 9-31. Adding items to the CheckBoxList control.

Example 9-5. btnSave_Click event handler modified to process complex Profile property

Protected Sub btnSave_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles btnSave.Click
 If Profile.IsAnonymous = False Then
 Profile.lastName = Me.txtLastName.Text
 Profile.firstName = Me.txtFirstName.Text
 Profile.phoneNumber = Me.txtPhone.Text
 Profile.birthDate = CType(Me.txtBirthDate.Text, System.DateTime)

 Profile.Sports = New System.Collections.Specialized.StringCollection()
 For Each item As ListItem In Me.cblSports.Items
 If item.Selected Then
 Profile.Sports.Add(item.Value.ToString())
 End If
 Next

 End If
 Response.Redirect("Welcome.aspx")
End Sub

312 | Chapter 9: Security and Personalization

Each time you navigate to the Profile page, the values are updated from the existing
profile (if any) in Page_Load and you are free to change them and save the new val-
ues, as shown in Figure 9-32.

However, after you save this page and go back to the Welcome page, the sports
selections are not displayed. To do so, add a ListBox control, called lbSports, to the
already existing Panel control pnlInfo, as shown in Figure 9-33. The selections will
be displayed in lbSports.

Modify the pre-existing Page_Load sub in Welcome.aspx.vb to bind the contents of
the Profile.Sports property to the ListBox, by adding the highlighted code from
Example 9-7.

Example 9-6. Page_Load for ProfileInfo.aspx.vb

Protected Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 If Not IsPostBack And Profile.UserName IsNot Nothing Then
 If Profile.IsAnonymous = False Then
 Me.txtLastName.Text = Profile.lastName
 Me.txtFirstName.Text = Profile.firstName
 Me.txtPhone.Text = Profile.phoneNumber
 Me.txtBirthDate.Text = Profile.birthDate.ToShortDateString()
 End If

 If Profile.Sports IsNot Nothing Then
 For Each item As ListItem In Me.cblSports.Items
 For Each profileString As String In Profile.Sports
 If item.Text = profileString Then
 item.Selected = True
 End If
 Next
 Next
 End If
 End If
End Sub

Example 9-7. Page_Load for Welcome.aspx.vb modified to bind the Profile.Sports data to the
ListBox

Protected Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 If User.Identity.IsAuthenticated = True Then
 btnManagersPage.Enabled = True
 Else
 btnManagersPage.Enabled = False
 End If

 If Not IsPostBack And _
 Profile.UserName IsNot Nothing And _
 Profile.IsAnonymous = False Then

Personalization | 313

 Me.pnlInfo.Visible = True
 Me.lblFullName.Text = Profile.firstName & " " & Profile.lastName
 Me.lblPhone.Text = Profile.phoneNumber
 Me.lblBirthDate.Text = Profile.birthDate.ToShortDateString()

 If Profile.Sports IsNot Nothing Then
 For Each sport As String In Profile.Sports
 Me.lbSports.Items.Add(sport)
 Next
 End If
 Else
 Me.pnlInfo.Visible = False
 End If

End Sub

Figure 9-32. The ProfileInfo page now has a CheckBoxList control showing complex profile
properties, and furthermore, the Profile object retains the data, so that it can be reloaded whenever
the user returns to this page.

Example 9-7. Page_Load for Welcome.aspx.vb modified to bind the Profile.Sports data to the
ListBox (continued)

314 | Chapter 9: Security and Personalization

When you click Save in the Profile page and return to the Welcome page, your saved
profile information is displayed, as shown in Figure 9-34.

Anonymous Personalization
Often you will want to allow your user to use your site for a while before logging in.
Along the way, the user may fill in information that you will want to store in the
user’s profile once the user is logged in. Imagine, for example, that the user has a
shopping cart. Your use model may be that anonymous users (those who are not
logged in) may add items to the cart. If they want the cart to persist after they leave,
or if they want to buy the items, they must log in; otherwise, you’ll toss the cart after
their session times out.

You need a way to store their anonymous profile, and, more important, you need a
way to merge that anonymous profile with their actual profile once you know who
they really are. No problem; ASP.NET provides for that very circumstance.

Copy the previous example, SitePersonalizationComplex, to a new web site called
AnonymousPersonalization. Set Welcome.aspx as the Start page and run the site to
verify that everything is working.

Figure 9-33. Add a ListBox control to the Welcome page to display the complex profile property.

Personalization | 315

To enable anonymous personalization, add the highlighted lines from Example 9-8
to your web.config file. Also highlighted in Example 9-8 is adding the allowAnonymous
attribute to the Sports profile property.

Figure 9-34. The Welcome page now displays the contents of Profile.Sports for logged-in users.

Example 9-8. web.config edits to enable anonymous personalization

<?xml version="1.0"?>
<configuration xmlns="http://schemas.microsoft.com/.NetConfiguration/v2.0">
 <appSettings/>
 <connectionStrings/>
 <system.web>
 <anonymousIdentification enabled="true" />
 <roleManager enabled="true" />
 <compilation debug="true" strict="false" explicit="true"/>
 <profile enabled="true" defaultProvider="AspNetSqlProfileProvider">
 <properties>
 <add name="lastName" />
 <add name="firstName" />
 <add name="phoneNumber" />
 <add name="birthDate" type="System.DateTime" />
 <add name="Sports"
 type="System.Collections.Specialized.StringCollection"
 allowAnonymous="true" />
 </properties>
 </profile>

316 | Chapter 9: Security and Personalization

Because anonymous users can now save and see the Sports profile property, you
need to modify both the Welcome and ProfileInfo pages.

Redesign your Welcome.aspx page in two ways: First, move the HyperLink that leads
to the Profile Information page outside of the LoginView control. Second, move the
ListBox (lbSports) outside the Panel pnlInfo. Thus, you can see both of these fea-
tures whether or not you are logged in. Also, change the text on the Add Profile Info
HyperLink to just Profile Info, since you will be using this link to add and edit the
profile info.

You must modify the Page_Load event handler from Welcome.aspx.vb, shown previ-
ously in Example 9-7, to properly display the anonymous information. The modified
Page_Load handler is shown in Example 9-9.

 <pages>
 <!-- stuff omitted for brevity --!>
 </pages>
 <authentication mode="Forms"/>
 </system.web>
</configuration>

Example 9-9. Page_Load in Welcome.aspx.vb modified to properly display anonymous profile
properties

Protected Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 If User.Identity.IsAuthenticated = True Then
 btnManagersPage.Enabled = True
 Else
 btnManagersPage.Enabled = False
 End If

 If Not IsPostBack And _
 Profile.UserName IsNot Nothing Then
 If Profile.IsAnonymous = False Then
 Me.pnlInfo.Visible = True
 Me.lblFullName.Text = Profile.firstName & " " & Profile.lastName
 Me.lblPhone.Text = Profile.phoneNumber
 Me.lblBirthDate.Text = Profile.birthDate.ToShortDateString()
 End If

 If Profile.Sports IsNot Nothing Then
 For Each sport As String In Profile.Sports
 Me.lbSports.Items.Add(sport)
 Next
 End If
 Else
 Me.pnlInfo.Visible = False
 End If

End Sub

Example 9-8. web.config edits to enable anonymous personalization (continued)

Personalization | 317

When an anonymous user fills in the profile information, the user will automatically
be assigned a Globally Unique Identifier (GUID), and an entry will be made in the
database for that ID. However, note that only those properties marked with
allowAnonymous may be stored, so you must modify your btnSave_Click event han-
dler in ProfileInfo.aspx.vb. Bracket the entries for all the profile elements except
Sports in an If statement that tests whether the user is currently Anonymous. The new
btnSave_Click event handler for ProfileInfo.aspx.vb is shown in Example 9-10.

The effect of the new code shown in Example 9-10 is that you check whether the
IsAnonymous property is False. If it is, then you are dealing with a logged-in user, and
you can get all of the properties; otherwise, you can get only those that are allowed
for anonymous users.

Modify the ProfileInfo page so that the non-anonymous data is in a panel that will be
invisible for users who are not logged in. The simplest way to do this may be to
switch to Source view and bracket the non-anonymous code inside a panel (don’t
forget to end the anonymous table before ending the panel, then inserting another
opening table tag), as shown in Example 9-11.

Example 9-10. Save event handler for ProfileInfo.aspx.vb with code for saving Sports property
moved outside of test for IsAnonymous

Protected Sub btnSave_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles btnSave.Click
 If Profile.IsAnonymous = False Then
 Profile.lastName = Me.txtLastName.Text
 Profile.firstName = Me.txtFirstName.Text
 Profile.phoneNumber = Me.txtPhone.Text
 Profile.birthDate = CType(Me.txtBirthDate.Text, System.DateTime)
 End If

 Profile.Sports = New System.Collections.Specialized.StringCollection()
 For Each item As ListItem In Me.cblSports.Items
 If item.Selected Then
 Profile.Sports.Add(item.Value.ToString())
 End If
 Next

 Response.Redirect("Welcome.aspx")
End Sub

Example 9-11. ProfileInfo.aspx with the addition of a panel for hiding nonanonymous
information

<%@ Page Language="VB" AutoEventWireup="false" CodeFile="ProfileInfo.aspx.vb"
 Inherits="ProfileInfo" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

318 | Chapter 9: Security and Personalization

<html xmlns="http://www.w3.org/1999/xhtml" >
<head runat="server">
 <title>Untitled Page</title>
</head>
<body>
 <form id="form1" runat="server">
 <div>
 <asp:Panel ID="pnlNonAnonymousInfo" runat="server" >
 <table>
 <tr>
 <td>First Name:</td>
 <td>
 <asp:TextBox ID="txtFirstName" runat="server" />
 </td>
 </tr>
 <tr>
 <td>Last Name:</td>
 <td>
 <asp:TextBox ID="txtLastName" runat="server" />
 </td>
 </tr>
 <tr>
 <td>Phone Number:</td>
 <td>
 <asp:TextBox ID="txtPhone" runat="server" />
 </td>
 </tr>
 <tr>
 <td>Birth Date:</td>
 <td>
 <asp:TextBox ID="txtBirthDate" runat="server" />
 </td>
 </tr>
 </table>
 </asp:Panel>
 <table>
 <tr>
 <td colspan="2">
 <asp:CheckBoxList ID="cblSports" runat="server" >
 <asp:ListItem>Skiing</asp:ListItem>
 <asp:ListItem>Mountain Biking</asp:ListItem>
 <asp:ListItem>Road Biking</asp:ListItem>
 <asp:ListItem>Swimming</asp:ListItem>
 <asp:ListItem>Baseball</asp:ListItem>
 <asp:ListItem>Football</asp:ListItem>
 <asp:ListItem>Basketball</asp:ListItem>
 </asp:CheckBoxList>
 </td>
 </tr>

Example 9-11. ProfileInfo.aspx with the addition of a panel for hiding nonanonymous
information (continued)

Personalization | 319

In order to hide this panel if the user is anonymous, edit the Page_Load event handler
in ProfileInfo.aspx.vb, as shown in Example 9-12. This code controls the visibility of
pnlNonAnonymousInfo based on whether or not the user is anonymous. Under any cir-
cumstances, the Sports preferences will be displayed.

Run the application. Do not log in, but do click the Profile Info link. Select a few
sports and click Save. When you return to the Welcome page, you are still not logged
in, but your selected sports are displayed, as shown in Figure 9-35.

 <tr>
 <td colspan="2">
 <asp:Button ID="btnSave" runat="server" Text="Save"/>
 </td>
 </tr>
 </table>

 </div>
 </form>
</body>
</html>

Example 9-12. Page_Load in ProfileInfo.aspx.vb modified to properly display anonymous profile
properties

Protected Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 If Not IsPostBack And Profile.UserName IsNot Nothing Then
 If Profile.IsAnonymous = True Then
 Me.pnlNonAnonymousInfo.Visible = False
 Else
 Me.pnlNonAnonymousInfo.Visible = True
 Me.txtLastName.Text = Profile.lastName
 Me.txtFirstName.Text = Profile.firstName
 Me.txtPhone.Text = Profile.phoneNumber
 Me.txtBirthDate.Text = Profile.birthDate.ToShortDateString()
 End If

 If Profile.Sports IsNot Nothing Then
 For Each item As ListItem In Me.cblSports.Items
 For Each profileString As String In Profile.Sports
 If item.Text = profileString Then
 item.Selected = True
 End If
 Next
 Next
 End If ' close for If Profile.Sports IsNot Nothing
 End If ' close for If Not IsPostBack And Profile.UserName IsNot Nothing
End Sub

Example 9-11. ProfileInfo.aspx with the addition of a panel for hiding nonanonymous
information (continued)

320 | Chapter 9: Security and Personalization

Migrating anonymous data to an actual user’s record

When the user does log in, you must migrate the Profile data you’ve accumulated for
the anonymous user to the authenticated user’s record (so that, for example, shop-
ping cart items are not lost). You do this by writing a global handler in global.asax.

Your project probably does not yet have a global.asax file, so click the Website ➝

Add New Item menu item. One of your choices will be Global Application Class,
and it will default to the name global.asax. Click Add to accept the default name.

When a user logs in to an ASP.NET application, the MigrateAnonymous event is fired
automatically. You can handle that event with a method in global.asax. The code to
do so is listed in Example 9-13.

Figure 9-35. The Profile information for an anonymous user is reflected on the Welcome page,
without logging in.

Example 9-13. MigrateAnonymous event handler in global.asax

Sub Profile_MigrateAnonymous(ByVal sender As Object, _
 ByVal e As ProfileMigrateEventArgs)
 Dim anonymousProfile As ProfileCommon = Profile.GetProfile(e.AnonymousID)
 If anonymousProfile IsNot Nothing And _
 anonymousProfile.Sports IsNot Nothing Then
 For Each str As String In anonymousProfile.Sports
 Profile.Sports.Remove(str) ' remove duplicates
 Profile.Sports.Add(str)
 Next
 End If
End Sub

Themes and Skins | 321

The event argument for MigrateAnonymous is of type ProfileMigrateEventArgs. This
event argument has a property called AnonymousID, which contains the ID of the
anonymous user (this is all done automatically). The first step, then, in this method
is to get the profile that corresponds to the AnonymousID of the anonymous user:

Dim anonymousProfile As ProfileCommon = Profile.GetProfile(e.AnonymousId)

If there is such a profile—that is, if the profile is not Nothing—then you know that
there is a matching anonymous profile, and that you may choose whatever data you
need from that profile. In this case, you copy over the Sports collection.

Themes and Skins
Many users like to personalize their favorite web sites by setting the look and feel to
meet their own aesthetic preferences. ASP.NET 2.0 supports that requirement with
“themes.”

A theme is a collection of skins. A skin describes how a control should look. A skin
can define style sheet attributes, images, colors, and so forth.

Having multiple themes allows your users to choose how they want your site to look
by switching from one set of skins to another at the touch of a button. Combined
with personalization, your site can remember the look and feel each user prefers.

There are two types of themes. The first, called stylesheet themes, define styles that
may be overridden by the page or control. These are, essentially, equivalent to CSS
style sheets. The second type, called customization themes, cannot be overridden.
You set a stylesheet theme by adding the StyleSheetTheme attribute to the Page direc-
tive, and, similarly, you set a customization theme by setting the Theme attribute in
the Page directive.

In any given page, the properties for the controls are set in this order:

• Properties are applied first from a stylesheet theme.

• Properties are then overridden based on properties set in the control.

• Properties are then overridden based on a customization theme.

Thus, the customization theme is guaranteed to have the final word in determining
the look and feel of the control.

Skins themselves come in two flavors: default skins and explicitly named skins. Thus,
you might create a Labels skin file called Labels.skin with this declaration:

<asp:Label runat="server"
 ForeColor="Blue" Font-Size="Large"
 Font-Bold="True" Font-Italic="True" />

322 | Chapter 9: Security and Personalization

This is a default skin for all Label controls. It looks just like the declaration of an
ASP.NET Label control (minus the ID attribute), but it is housed in a skin file and,
thus, is used to define the look and feel of all Label objects within that skin file’s
theme.

In addition, however, you might decide that some labels must be red. To accomplish
this, create a second skin, but assign this skin a SkinID property:

<asp:Label runat="server" SkinID="RedLabel"
 ForeColor="Red" Font-Size="Large"
 Font-Bold="True" Font-Italic="True" />

Any label that does not have a SkinID attribute will get the default skin; any label that
sets SkinID="Red" will get your named skin.

The steps to providing a personalized web site are as follows:

1. Create the test site.

2. Organize your themes and skins.

3. Enable themes and skins for your site.

4. Specify themes declaratively if you wish.

Create the Test Site
To demonstrate the use of themes and skins, copy the previous example web site,
AnonymousPersonalization, to a new web site, called Themes. Set the start page to
Welcome.aspx and test the application to make sure it still works as expected.

The first thing to do is to add some controls whose look and feel you can set.

Open Welcome.aspx, create a table with two rows and four columns for layout
underneath lbSports, and drag on some new controls, as shown in Figure 9-36.

There are four labels: lblListBox, lblRadioButtonList, lblCalendar, and lblTextBox.
Each of these labels provides a caption for the neighboring control, a ListBox, a
RadioButtonList, a Calendar, and a TextBox, respectively. Use the default properties
for all, other than the IDs and Text properties of the Label controls.

You’ll also need to click the Smart Tag for both ListBox1 and RadioButtonList1. For
each of these, choose Edit the List items. In the ListItem Collection Editor, add four
items to ListBox1 and six items to RadioButtonList1, the result of which is shown in
Figure 9-36. In this example, the ListItems are named First Item, RadioButton1, and
so on. These are not the default names; they are just chosen to make the example
clear.

You will use themes to change the look and feel of the new controls.

Themes and Skins | 323

Organize Site Themes and Skins
Themes are stored in your project in a special folder named App_Themes. To create
this folder, go to Solution Explorer, right-click the web site, and choose Add ASP.NET
Folder ➝ Theme, as shown in Figure 9-37. Name the new folder Dark Blue—the
folder App_Themes will be created automatically, with a Theme folder named Dark
Blue immediately under it. Right-click App_Themes in the Solution Explorer and
again select Add ASP.NET Folder. Create a second theme folder, named Psychedelic.

Right-click the Dark Blue theme folder and choose Add New Item. From the tem-
plate lists, choose Skin File and name it Button.skin (to hold all the button skins for
your Dark Blue theme), as shown in Figure 9-38.

Figure 9-36. Themes test page in Design view showing the four Label controls and the controls they
caption.

Calendar1

ListBox1

RadioButtonList1

TextBox1

324 | Chapter 9: Security and Personalization

Figure 9-37. Adding a Theme folder to a web site.

Figure 9-38. Adding a new Skin file.

Web Site folder

Right-click here to get this

Select

Themes and Skins | 325

Each skin file is just a text file that contains a definition for the control type, but with
no ID. Thus, your Button.skin file for the Dark Blue theme might look like this:

<asp:Button runat="server"
 ForeColor="Blue"
 Font-Size="Large" Font-Bold="True" Font-Italic="True" />

Create skin files for each of the following types in both themes:

• Button.skin

• Calendar.skin

• Label.skin

• ListBox.skin

• RadioButtonList.skin

• TextBox.skin

It is not required that the name of the skin file corresponds to the type
of control referenced in the file, but it does simplify site maintenance.
In fact, it is not even necessary for each control to go into a separate
skin file, so you could put them all into a single skin file.

At this point, your Solution Explorer should look more or less like Figure 9-39.

The rest of these skin files are empty right now, so you should create some skins for
the purpose of this example. Copy the code from Button.skin, and paste it into
Calendar.skin. Change asp:Button to asp:Calendar, and now the calendar skin file is
ready to go. Use the same procedure for all the skin files in the Dark Blue theme.
Then do the same for the skin files in the Psychedelic theme, but feel free to change
the color and size of the fonts in these files as you see fit.

Enable Themes and Skins
To let your users choose the theme they like and have their preference stored in their
profile, you need only to add a single line to the properties element in the profile
element of web.config:

<add name="Theme" />

Strictly speaking, adding this line to web.config is not necessary to enable themes on
a site. It is only necessary to enable saving themes to a user profile.

Save and rebuild your application.

326 | Chapter 9: Security and Personalization

In order to run an ASP.NET web site, the application must be built, or
compiled. When you run a web site from within the IDE, it is built
automatically, as indicated on the status line at the bottom of the win-
dow. It is also possible to build the application without running it by
clicking the Build menu item and choosing one of the options: Build
Page, Build Web Site, or Rebuild Web Site. Normally, a page or code
file is not rebuilt if nothing has changed. The Rebuild menu item
forces a rebuild of all components.

Sometimes it is helpful to build the site without running it just to
check for syntax and compiler errors. Also, sometimes the IDE gets
confused until the app is rebuilt, so everything is known to the system.

That was easy.

Specify Themes for Your Page
You can set the themes on your page either declaratively or programmatically. For
example, to set a theme declaratively for Welcome.aspx, add the Theme attribute to
the Page directive:

Figure 9-39. Skins in Solution Explorer.

Themes and Skins | 327

<%@ Page Language="VB" AutoEventWireup="false" CodeFile="Welcome.aspx.vb"
 Inherits="Welcome" Theme="Dark Blue" %>

Set Welcome.aspx as the start page. Run the app now and you will see the Dark Blue
theme applied, as shown in Figure 9-40. (Obviously the monochromatic printed
book will not show the colors in full splendor.)

You can also set the theme programmatically, either by hardcoding it or (even bet-
ter) by setting it from the user’s profile.

StyleSheet themes are set by overriding the StyleSheetTheme property for the page.
IntelliSense will help you with this. Open Welcome.aspx.vb and scroll to the bottom
of the class. Type the word overrides just above the End Class statement and all the
overridable members are shown. Start typing sty and IntelliSense will scroll to the
property you want: StyleSheetTheme, as shown in Figure 9-41.

Figure 9-40. The page is rendered using the Dark Blue theme as a result of adding the Theme
attribute to the Page directive.

328 | Chapter 9: Security and Personalization

Once IntelliSense finds the property you want, press the Tab key to accept it. It will
create a code skeleton for a property called StyleSheetTheme.

This code skeleton includes default code for both the getter and setter. Replace that
default code with the highlighted code in Example 9-14.

Figure 9-41. Overriding the StyleSheetTheme property.

— V B C H E AT S H E E T —
Properties

Like all properties in .NET, StyleSheetTheme can have two special methods: one, called
Get, for retrieving the value of the property; another, called Set, for setting the value of
the property. These special methods are referred to variously as the accessors or the
getter and setter.

If your code retrieves the value of a property, as in the following:

Dim i as Integer = SomeProperty

The getter is implicitly called. You don’t have to actually call it. Similarly, if you set the
value of a property, the setter is implicitly called.

If a property needs to be read-only, then omit the setter. If for some reason, you want
to disallow using the value of the property, you could omit the getter.

Example 9-14. Setting the StyleSheetTheme property

Public Overrides Property StyleSheetTheme() As String
 Get
 If Profile.IsAnonymous = False _
 And Profile.Theme IsNot Nothing Then
 Return Profile.Theme
 Else
 Return "Dark Blue"
 End If

Themes and Skins | 329

If you are going to set a customization theme programmatically, however, you must do
so from the page’s PreInit event handler, because the theme must be set before the
controls are created. A Page_PreInit event handler is created the same way a Page_Load
event handler is created: Select (Page Events) in the left drop-down and PreInit in the
right. Create the PreInit event handler and type in the bolded code from Example 9-15.

Setting the theme in PreInit creates a bit of a difficulty when you want to allow the
user to change the theme at runtime. If you create a control that posts the page back
with a new theme, the PreInit code runs before the event handler for the button that
changes the theme (see the discussion of the page life cycle in Chapter 7). So, by the
time the theme is changed, the controls have already been drawn.

To overcome this, you must, unfortunately, refresh the page again. This can be done
easily enough by calling the Server.Transfer method from the event handler, which
also sets the theme.

To see this, add two buttons to Welcome.aspx, labeled Psychedelic and Dark Blue
with ID’s of btnPsychedelic and btnDarkBlue, respectively. You will want both but-
tons to share the same event handler, Set_Theme, shown in Example 9-16. An easy
way to have the IDE set up that event handler for you is to switch to Design view and
click one of the buttons. Click the lightning bolt in the Properties window to go to
the events, click next to the Click event, and type in the method name Set_Theme.
You are now ready to type in the event handler. Once the method exists in your
code-behind, you can hook the other button to the method by clicking the button
and selecting the method from the drop-down next to the Click event in the Proper-
ties window.

You’ll cast the sender to the Button type and check its Text property, setting the
theme appropriately.

 End Get
 Set(ByVal value As String)
 Profile.Theme = value
 End Set
End Property

Example 9-15. PreInit event handler in Welcome.aspx.vb

Protected Sub Page_PreInit(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.PreInit
 If Profile.IsAnonymous = False Then
 Page.Theme = Profile.Theme
 End If
End Sub

Example 9-14. Setting the StyleSheetTheme property (continued)

330 | Chapter 9: Security and Personalization

What’s going on here is that you’re creating a new Button object called btn. That
Button is set to be equivalent to the button that raised the event (sender). If the Text
property of the sender is “Psychedelic,” you set the Psychedelic theme. If not, the
event must have come from the Dark Blue button, and that theme is set instead.

There is one more problem. If you run this page and try to set the theme before you
are logged in, an exception will result. The Theme property cannot be set for an anon-
ymous user.

To prevent this from happening, you will hide the two theme buttons unless the user
is logged in. To do so, add the following two lines to the Page_Load method of
Welcome.aspx.vb:

btnDarkBlue.Visible = Not Profile.IsAnonymous
btnPsychedelic.Visible = Not Profile.IsAnonymous

These lines set the Visible property of the Buttons to the opposite of the IsAnonymous
property. If the user is logged in, IsAnonymous is False, so the button’s Visible prop-
erty is set True. Now when the user logs in, the page will look something like that
shown in Figure 9-42.

When the user is not logged in, the Welcome page’s default theme will be used.
Once the user sets a theme, that theme will be used when you return to the Welcome
page.

Using Named Skins
You can override the theme for particular controls by using named skins. You can set
the lblRadioButtonList label to be red even in the Dark Blue theme, by using a
named skin. To accomplish this, create two Label skins in the Label.skin file within
the Dark Blue folder:

<asp:Label Runat="server"
 ForeColor="Blue" Font-Size="Large"
 Font-Bold="True" Font-Italic="True" />

Example 9-16. Set_Theme method Button Click event handler in Welcome.aspx.vb for handling the
buttons that set the theme

Protected Sub Set_Theme(ByVal sender As Object, _
 ByVal e As System.EventArgs) _
 Handles btnPsychedelic.Click, btnDarkBlue.Click
 Dim btn As Button = CType(sender, Button)
 If btn.Text = "Psychedelic" Then
 Profile.Theme = "Psychedelic"
 Else
 Profile.Theme = "Dark Blue"
 End If

 Server.Transfer(Request.FilePath)
End Sub

Themes and Skins | 331

<asp:Label Runat="server" SkinID="Red"
 ForeColor="Red" Font-Size="Large"
 Font-Bold="True" Font-Italic="True" />

The first skin is the default; the second is a named skin, because it has a SkinID prop-
erty set to Red. Click the lblRadioButtonList control (that is the Label, not the
RadioButtonList) on the Welcome page in Design view and set the SkinID property to
Red (you may need to switch the Properties window back to properties from events).
Or, open the source for Welcome.aspx and find the lblRadioButtonList and add the
attribute SkinID="Red":

<asp:Label ID="lblRadioButtonList" Runat="server" Text="Radio Button List"
 SkinID="Red"/>

When you log in and set your theme to Dark Blue, you’ll find that the label for the
RadioButtonList is Red.

Figure 9-42. ThemesTestPageRunningLoggedIn.gif

332 | Chapter 9: Security and Personalization

Summary
• ASP.NET provides controls you can use to allow a user to log in to your site.

• Forms-based authentication is a technique for validating the identity of the user
of the web page and is useful for users connecting across the Internet.

• Windows-based authentication lets Windows handle the authentication tasks,
and is most useful for users connecting on an intranet.

• Before users can log in to your site, you need to create user accounts for them.
One way to do this is administratively, using the Web Site Administrative Tool
(WAT). The WAT presents itself in a separate browser window, and allows you
to choose between Windows- and forms-based authentication.

• To create a new user with the WAT, you simply need to select the link in the
WAT, and fill in the user’s name, password, email address, and a security ques-
tion. The information will automatically be added to your site’s security data-
base.

• Instead of using the WAT, you can also create user accounts and add them to
your security database from within your site. ASP.NET provides a
CreateUserWizard control that lets users create their own accounts when your
site is running. Users provide all the same information, and the account is auto-
matically created.

• The LoginStatus control has two templates: one for logged-in users, and one for
users who aren’t logged in yet. Logged-in users are greeted with a message you
can configure, and other users are given a link so they can log in.

• The LoginView control also has two templates for logged-in and not-logged-in
(anonymous) users. You can use this control to display customized content
based on the user’s login status.

• The Login control is the control where users enter a username and password to
log in to your site.

• The PasswordRecovery control automatically resets a user’s password and sends
them an email notifying them of the change. This requires an SMTP server.

• Another way to determine what users can and can’t see on your site is to use
Roles. You define a specific role, assign users to that role, and then specify what
pages members of the role can or cannot access.

• You can enable roles, create new roles, and add users to roles from the WAT.

• A good practice on sites where security is important is to check the login status
of the user in the Page Load event of every page.

• The User.Identity.IsAuthenticated property is a Boolean that you can use to
take action based on whether the user is logged in.

• To determine if a user is a member of a specific role, you can use the User.
IsInRole Boolean.

Summary | 333

• Personalization allows your users to dictate certain aspects of the site, which per-
sist from one visit to the next. Personalization options can include your site’s
appearance, personal information, shopping carts, and other choices.

• A simple way to provide personalization is to define a profile for each user, and
store their personalization choices there.

• To use profiles in your site, modify web.config, create a profile section, and set
the enabled property to true. Then create a <properties> section within the
profile section, and use the add attribute to add the names of any profile infor-
mation you want to store.

• The default storage type for a profile property is string, but you can specify a dif-
ferent type with the Type attribute.

• The Profile.IsAnonymous property is a Boolean that lets you take action based
on whether the user is logged in or not (using an anonymous profile).

• If you want your user to be able to use your site without logging in, you can
enable anonymous personalization. Simply add a line to web.config setting
<anonymousIdentification enabled = "true" />.

• When the user logs in, if you want to copy the user’s profile from the anony-
mous profile to the user’s permanent profile, you need to handle the
MigrateAnonymous event, which is automatically raised when the user logs in. The
code for your event handler should copy the properties from the anonymous
profile to the logged-in profile.

• You can also allow users to customize the visual appearance of your site with
themes. A theme is made up of skins, each of which provides the visual appear-
ance of a single control.

• Themes are stored in a folder within your projects named App_Themes. Each sub-
folder within App_Themes is the name of a specific theme. Within the named
theme folders, you store specific skin files, one for each control you want to
modify.

• A skin file looks like a control declaration, but it has no ID property, just appear-
ance properties.

• To enable users to set the theme of your site, simply add <add name="Theme" /> to
the properties element in the profile section of web.config.

• To specify a theme on your page, just add a Theme attribute to the Page directive.
To set the theme programmatically, you need to add an Overrides Property
StyleSheetTheme() method to the class for the page, and set the accessors appro-
priately.

• To set a customization theme programmatically, you need to add a PreInit
event handler, so that the theme is specified before the controls are created.

• To specify the theme for a specific control, use named skins, by setting a SkinID
property in the skin file.

334 | Chapter 9: Security and Personalization

You’ve now tried out just about every section of the ASP.NET toolbox, and you’ve
seen controls ranging from the simple to the complex. You’ve learned how controls
work together, and how to create event handlers for them. You know how to create
sites that use master pages, allow users to log in, provide navigation tools, access
databases, and do it all while using Ajax to enhance the experience. What’s left to
do? It’s time to put it all together, of course. In the next chapter, you’ll find a project
that uses everything you’ve learned so far to build a fully functional web site.

Exercises | 335

B R A I N B U I L D E R

Quiz
1. What are the two methods for creating users for your site?

2. What is the difference between forms-based security and Windows
authentication?

3. Where is the user information stored in your site?

4. What control do you need to add to enable users to create their own accounts?

5. What tool do you use to add users to roles?

6. What property do you use to restrict access to a page based on a role?

7. What do you need to do to enable user profiles in your site?

8. How do you retain profile information for a user without logging in?

9. What’s the difference between style sheet themes and customization themes?

10. Where do you specify settings for a skin?

Exercises
Exercise 9-1. In this set of exercises, you’re going to create a web site that hosts dis-
cussion forums for tropical fish enthusiasts. You won’t actually write the code for the
forums, but you’ll build the framework so that users can log in if they wish and cus-
tomize the site. Start by creating a site that has a front page welcoming users to the
site and stating their login status. Add a login page, and a separate page where users
can create their own accounts. Create a few users by whatever method you like to
test these pages. The page for a logged-in user would look like Figure 9-43.

Exercise 9-2. You’ve made a good start, making the site available to users, but you
currently have no content. Copy the site to a new web site named Exercise 9-2, and
add two content pages, which will be placeholders for the forums. One page should
be available to all users, for general discussion of fish; call it fishforum.aspx. The
other page should only be available to site moderators; call it siteadmin.aspx. You
may want to put moderator-specific content there in the future. Be sure to provide
hyperlinks to reach the two content pages from the Home page, and also links to
take users from the content pages back to the Home page.

Exercise 9-3. You’ve made sure that your site is only available to registered users, but
now you should take advantage of the user accounts to personalize the users’ experi-
ence. Copy the site to a new web site named Exercise 9-3. Add a page to the site
where users can customize their profiles. Add a label to have users enter their pre-
ferred name. Add another label where they can enter how many fish they have. Add a
radio button group where users can choose between tropical or freshwater fish. Give
them a DropDownList where they can choose their favorite fish type. The Profile page
should look something like Figure 9-44 when it’s filled in.

336 | Chapter 9: Security and Personalization

Figure 9-43. Your goal for Exercise 9-1.

Figure 9-44. The Profile page for Exercise 9-3.

Exercises | 337

On the home page, provide an opportunity for logged-in users to edit their profile,
and also display the contents of the profile on the home page. The home page should
look something like Figure 9-45 when the user is logged in.

Exercise 9-4. A page about tropical fish isn’t very much fun unless it’s colorful, but
users probably want to color their pages to match their favorite fish. We’ll keep it
simple for this exercise: Just create two theme files, with skin files for labels and
buttons. Create the two theme files as follows:

• Angelfish theme: For buttons, set the foreground to yellow, the background to
black, and the text to large. For labels, set the foreground to white, the back-
ground to black, and the text to large.

• Clownfish theme: For both buttons and labels, set the foreground to white, the
background to orange, and the text to large.

Add a section to the user profile that lets users pick the theme they want to use, and
have it displayed on all the pages of the site. The front page should look like
Figure 9-46 for a user who has chosen the Angelfish theme.

Figure 9-45. The home page for Exercise 9-3.

338 | Chapter 9: Security and Personalization

Figure 9-46. Your goal for Exercise 9-4.

339

Chapter 10 CHAPTER 10

Putting It All Together10

You’ve now practiced using just about every tool in the ASP.NET toolbox. You’ve
made dozens of sample applications, and you’ve gotten a feel for just how easy it is
to make functional web sites with just a few controls. Now it’s time to put those
skills to the test. In this chapter, you’ll make a fully functional shopping application
for the AdventureWorks company. Unlike the order form you made in Chapter 2,
this application will use all the skills you’ve learned. It uses data controls to display
the AdventureWorks database and retrieve the content the user wants, done in AJAX
to speed things along. It has a shopping cart to store the items the user has pur-
chased. It uses session state to pass that information on to a purchasing page. It
incorporates validation controls to make sure the user enters good data. It has mas-
ter pages that provide a consistent look and feel to the site, and custom error pages in
case of problems. Finally, it has login controls to ensure that only registered users
can access the pages of the site. In short, it’s a fully functional working application.

Getting Started

Create a new AJAX-enabled web site entitled AllTogether. This is the
site that you’ll use throughout the example in this chapter. This
chapter consists of a single large example. As we build up the exam-
ple, we will provide code listings and snippets along the way. At the
end of the chapter are complete code listings for the entire example
so you can see how everything fits together. You can also download
the example, as well as all the other examples in this book, from
www.LibertyAssociates.com.

Add a Master page to the web site, MasterPage.master. Be sure that the “Place Code
in separate file” checkbox is checked.

Delete the Default.aspx file; you won’t need it.

http://www.LibertyAssociates.com

340 | Chapter 10: Putting It All Together

Add an Images folder to the web site by right-clicking on the root folder in the Solu-
tion Explorer and selecting New Folder. Insert a folder and call it Images.

Create the logo file AdventureWorksLogo-250x70.gif using any image-
editing tool you like (our logo file is 250 pixels wide by 70 pixels high),
or download it from this book’s web site. Once the image file is on
your machine, it must be added to the project. Right-click on the
Images folder and select Add Existing Item. Then navigate to the logo
file, whereever it is on your file system, and select it. It will automati-
cally be copied to the Images folder and added to the project.

Adding Styles
You’ll be using CSS styles for the various parts of your site, so you need to define the
styles first. Add a CSS style sheet to the web site by selecting Website ➝ Add New
Item, and selecting Style Sheet. You can keep the default name of StyleSheet.css.

Copy in the styles from Example 10-1.

Example 10-1. StyleSheet.css

body
{
font-family:Arial;
}
.ButtonSelect
{
font-weight:normal;
font-size:x-small;
background-color:Yellow;
color:Blue;
}
.ButtonText
{
font-weight:bold;
font-size:x-small;
color:Black;
}
.Hyperlink
{
font-weight:normal;
font-size:small;
color:Blue;
text-decoration:underline;
}
.LabelMedium
{
font-weight:bold;
font-size:Medium;
color:Black;
}

Adding Styles | 341

.LabelSmall
{
font-weight:bold;
font-size:small;
color:Black;
}
.ListHeading
{
font-weight:bold;
text-decoration:underline;
font-size:x-small;
color:Black;
}
.MenuText
{
font-weight:normal;
font-size:small;
color:Blue;
}
.PageTitle
{
font-weight:bold;
font-size:xx-large;
color:Green;
}
.PageSubTitle
{
font-weight:bold;
font-size:x-large;
color:Blue;
}
.TableCells
{
font-weight:normal;
font-size:small;
color:Black;
text-align:left;
vertical-align:top;
}
.TableColumnHeading
{
font-weight:bold;
text-decoration:underline;
font-size:small;
color:Black;
text-align:left;
}
.TableColumnHeadingRight
{
text-align:right;
}

Example 10-1. StyleSheet.css (continued)

342 | Chapter 10: Putting It All Together

.TableNumberDecimal
{
font-weight:normal;
font-size:small;
color:Black;
text-align:right;
}
.TableRowHeading
{
font-weight:bold;
text-decoration:none;
font-size:small;
color:Black;
text-align:left;
}
.TextBold
{
font-weight:bold;
font-style:italic;
font-size:medium;
color:Black;
}
.TextNormal
{
font-weight:normal;
font-size:medium;
color:Black;
}
.TextSmall
{
font-weight:normal;
font-size:small;
color:Black;
}
.TextXSmall
{
font-weight:normal;
font-size:x-small;
color:Black;
}
.ValidationError
{
font-weight:normal;
font-size:small;
}
.Warning
{
font-weight:bold;
font-size:Small;
color:Red;
}

Example 10-1. StyleSheet.css (continued)

Using Master Pages | 343

Using Master Pages
Add a new page, Login.aspx. Check both checkboxes: “Place code in separate file” and
“Select master page.” When the Master Page dialog comes up, select MasterPage.
master.

Add several other new pages: Home.aspx, Products.aspx, Cart.aspx, Purchase.aspx,
and Confirm.aspx. For each of these, select the same master page. Set Home.aspx to
be the startup page.

Open MasterPage.master. Add a style statement to the <head> element to import the
style sheet, as in the highlighted line in the following snippet:

<head runat="server">
 <title>Untitled Page</title>
 <style type="text/css">@import url(StyleSheet.css); </style>
</head>

Add an HTML table for layout, inside the <div> element, but before the content
placeholder control. You can use the IDE tools or just type it manually in the Source
view window. With the help of Intellisense, I find it easier to type it manually.

Add the controls highlighted below:

<table border="0">
 <tr>
 <td colspan="4">
 <table>
 <tr>
 <td width="10px"> </td>
 <td>
 <asp:ImageButton ID="ibLogo" runat="server"
 ImageUrl="~/images/AdventureWorksLogo-250x70.gif"
 AlternateText="AdventureWorks logo"
 PostBackUrl="~/Home.aspx" />
 </td>
 <td width="10px"> </td>
 <td width="500px" align="right">
 Adventure Works

 <asp:Label ID="lblPageSubTitle" runat="server"
 CssClass="PageSubTitle" Text="Page SubTitle"/>

.WarningRoutine
{
font-weight:normal;
font-size:Small;
color:Red;
}

Example 10-1. StyleSheet.css (continued)

344 | Chapter 10: Putting It All Together

 <asp:Label id="lblTime" runat="server"
 CssClass="TextXSmall"/>
 </td>
 <td width="10px"> </td>
 </tr>
 <tr>
 <td colspan="5">
 <hr />
 </td>
 </tr>
 </table>
 </td>
 </tr>
</table>
<asp:contentplaceholder id="ContentPlaceHolder1" runat="server" >
</asp:contentplaceholder>

This code defines the table that you’re going to use to hold the content of the master
page. The first cell contains an ImageButton control to hold the logo for the site;
when users click on the logo, it will take them to the Home.aspx page. The control
uses the logo image you created earlier.

The cell to the right of the logo contains some text for the title, and a pair of labels.
Note the use of the element on the page title; this allows you to apply a CSS
class to it. The first label will contain the page subtitle, which will change depending
on the page the user is on. The other label contains the date and time, just for
convenience.

Also note the use of the border="0" in the opening <table> tag. This is a vestige of the
development process. Although you might not want borders in the finished site, it is
often helpful to make the cell borders visible during development by setting the
border thickness to 1 pixel with border="1". Then when you are satisfied with the
layout, set the borders back to 0 so they are no longer visible.

You’ll need to populate the Label that shows the time, so open MasterPage.master.
vb, the code-behind for the master page. Create an event handler for the Page_Load
event by selecting (PageEvents) from the left drop-down menu and Load from the
right drop-down menu. Enter the following line of code:

lblTime.Text = DateTime.Now.ToString()

Open Home.aspx. Edit the Page directive at the top of the file to set the title
attribute; also add the trace attribute at this time, but set it to false. You’ll need this
because you know you are going to want to turn trace on or off during various
phases of development.

Add a MasterType directive to the file also. This will enable the content page to access
properties declared in the master page:

<%@ Page Language="VB" MasterPageFile="~/MasterPage.master" AutoEventWireup="false"
 CodeFile="Home.aspx.vb" Inherits="Home" title="Home Page" Trace="false"%>

Using Master Pages | 345

<%@ MasterType TypeName="MasterPage" %>
<asp:Content ID="Content1" ContentPlaceHolderID="ContentPlaceHolder1"
 Runat="Server">
</asp:Content>

Run the site now, to see what you’ve done so far. You should see something like
Figure 10-1.

You want the page subtitle to display the current page; for example, Home or Prod-
ucts. The label is already in place in the master page.

Go to the code-behind file for the master page. Add the following code outside the
Page_Load method and inside the class definition to create a public property called
PageSubTitle, of type Label:

Public Property PageSubTitle() As Label
 Get
 Return lblPageSubTitle
 End Get
 Set(ByVal value As Label)
 lblPageSubTitle = value
 End Set
End Property

Figure 10-1. Here’s how the Home page looks with nothing on it and the page subtitle not yet set.

346 | Chapter 10: Putting It All Together

Then in the code-behind of the Home page, create a Page_Load method with the fol-
lowing highlighted line of code:

 Protected Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 Me.Master.PageSubTitle.Text = "Home"
 End Sub

If the IDE draws squiggly lines indicating some sort of problem, try
building the web site by clicking on the Build menu item and selecting
Build Web Site. The spurious error indicators will go away.

Switch over to the Source view of the Home page and add some content inside the
Content control, such as listed in Example 10-2.

Running the site now gives Figure 10-2 for the Home page.

Setting Up Roles and Users
Your page has a good foundation, but you should add a measure of security to it to
separate the customers from the managers. The next step is to enable security and
then create a few users for your site.

Go to the WAT, by selecting Website ➝ ASP Configuration. Click on Security, and
then click on Select authentication type under the Users column. Because this site
will be available on the Internet, forms-based security is the way to go. Change the
Authentication type to Forms by selecting “From the internet.” You’ll be setting up
some roles to group the AdventureWorks users into customers, employees, and man-
agers. Back on the Security page, click on Enable roles. The security page should
now look something like Figure 10-3.

Example 10-2. Markup for the Home page - Home.aspx

<%@ Page Language="VB" MasterPageFile="~/MasterPage.master" AutoEventWireup="false"
 CodeFile="Home.aspx.vb" Inherits="Home" title="Home Page" Trace="false"%>
<%@ MasterType TypeName="MasterPage" %>
<asp:Content ID="Content1" ContentPlaceHolderID="ContentPlaceHolder1"
 Runat="Server">
 <h2>This Is Your Home Page</h2>
 <div class="TextNormal">
 You can put some stuff about your company here. Perhaps some links.
 Of course, in a real world application, the navigation would probably
 much more complex. Also, the buttons would actually do something,
 rather than just wave their arms and say Look
 at me!
 </div>
</asp:Content>

Setting Up Roles and Users | 347

Figure 10-2. The Home page now has the subtitle set and some content added.

Figure 10-3. You’ve switched to Forms authentication, and enabled roles for your site, but there
aren’t any users just yet.

348 | Chapter 10: Putting It All Together

Click on Create or Manage roles, and create three roles: Manager, Employee, and
Customer.

Click on the Back button to go back to the Security page. Click on Create user, and
create three users, as follows:

You must also provide an email address and a security question and answer for each
user. We will not be using that information in this example, so it does not matter what
you enter. Close the WAT. Now you have three users to work with for this example.

Logging In
Now that you have your users, you need a way for them to log in. Edit the master
page markup file to add some login functionality.

Add another table row to the layout table, listed in Example 10-3. Note that the
ContentPlaceHolder control has been moved to within one of the table cells.

User Password Role

dhurwitz dan123! Employee

jliberty jesse123! Customer

rhampster rich123! Manager

Example 10-3. Code snippet from MasterPage.master containing the login controls

<tr>
 <td width="5px"> </td>
 <td width="150px" valign="top">
 <asp:LoginStatus ID="LoginStatus1" runat="server" CssClass="Hyperlink" />

 <asp:LoginView ID="LoginView1" runat="server" >
 <LoggedInTemplate>
 Welcome
 <asp:LoginName ID="LoginName1" runat="server"
 CssClass="WarningRoutine"/>
 </LoggedInTemplate>
 <AnonymousTemplate>
 You are not logged in.
 Please click the login link to log in to this website.
 </AnonymousTemplate>
 </asp:LoginView>
 </td>
 <td width="5px"> </td>
 <td width="700px" valign="top" bgcolor="yellow">
 <asp:contentplaceholder id="ContentPlaceHolder1" runat="server" >
 </asp:contentplaceholder>
 </td>
</tr>

Logging In | 349

This code adds a new row to the table on the master page. The first cell is just a
spacer. The second cell holds a LoginStatus control and a LoginView control to go
with it. Notice that the CssClass properties of both controls have been set, so you
can apply styles to them. The LoginView control has text added to it to present appro-
priate messages to logged-in or anonymous users.

The third cell in the row now holds the ContentPlaceHolder control, so be sure to
move the ContentPlaceHolder control that was outside the table to this cell.

Edit the Login.aspx page that you created earlier. Set the title in the Page directive
and add the same MasterType directive that you added to the Home page. Drag a
Login control into the Content area. Switch to Design view, click on the Smart Tag of
the Login control, and click on Auto Format. Select the “Professional” scheme. Set
the DestinationPageUrl property to ~/Home.aspx, so that users will be returned to the
Home page after they log in. You will end up with something like Example 10-4 for
the markup for the Login page, with the changes highlighted.

Open the code-behind of the Login page. Create an event handler for the Page_load
event and add the following highlighted line of code:

Protected Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 Me.Master.PageSubTitle.Text = "Login"
End Sub

All this does is set the page subtitle in the master page area.

Now run the site. You will see the first screen shown in Figure 10-4.

Example 10-4. Login.aspx

<%@ Page Language="VB" MasterPageFile="~/MasterPage.master" AutoEventWireup="false"
 CodeFile="Login.aspx.vb" Inherits="Login" title="Login" Trace="false" %>
<%@ MasterType TypeName="MasterPage" %>
<asp:Content ID="Content1" ContentPlaceHolderID="ContentPlaceHolder1"
 Runat="Server">
 <asp:Login ID="Login1" runat="server" DestinationPageUrl="~/home.aspx"
 BackColor="#F7F6F3" BorderColor="#E6E2D8" BorderPadding="4"
 BorderStyle="Solid" BorderWidth="1px" Font-Names="Verdana"
 Font-Size="0.8em" ForeColor="#333333">
 <TitleTextStyle BackColor="#5D7B9D" Font-Bold="True"
 Font-Size="0.9em" ForeColor="White" />
 <InstructionTextStyle Font-Italic="True" ForeColor="Black" />
 <TextBoxStyle Font-Size="0.8em" />
 <LoginButtonStyle BackColor="#FFFBFF" BorderColor="#CCCCCC"
 BorderStyle="Solid" BorderWidth="1px"
 Font-Names="Verdana" Font-Size="0.8em" ForeColor="#284775" />
 </asp:Login>
</asp:Content>

350 | Chapter 10: Putting It All Together

Click on the Login link to get the Login page, shown as the second screen in
Figure 10-4. Entering the username and password for one of the user accounts you
created earlier in this chapter. After you click on the Log In button, you will be
brought back to the Home page, shown as the third screen in Figure 10-4.

Earlier, you enabled roles in the WAT and added each user to one of the three roles:
Manager, Customer, and Employee. As you saw in Chapter 9, you can use these
roles to present customized content to the users who visit the page. You’ll add two
Panel controls to the Home page that present content depending on the user’s role.
Edit Home.aspx to see this in action. Add two Panel controls, as listed in
Example 10-5, to the page, inside the Content control, after the closing <div> for the
text that all users see.

Figure 10-4. When you first run the site, you’ll see the screen on the left. After you click the Login
link, you’ll be taken to the second screen, and after you’ve successfully logged in, you’ll be taken
back to the Home page, which now looks like the third screen.

Example 10-5. Role-specific content in Home.aspx

<asp:Panel ID="pnlEmployee" runat="server" Visible="false" >
 <h3>Employee Information</h3>
 <div class="TextNormal">
 This panel should only be visible to users are a members of the
 Employee role. Turning on the visibility of this Panel occurs in the
 Page_Load event handler.

First screen

Second screen

Third screen

Navigation | 351

Switch over to the code-behind for the Home page, Home.aspx.vb. Add the high-
lighted lines of code from Example 10-6 to the Page_Load event handler.

The code here is very simple; it sets the visibility of each panel depending on the
value of the IsInRole method for the appropriate role.

Before logging in, the Home page will still look like the first screen in Figure 10-4. If
you log in as rhampster, who is a member of the Managers role (it’s only fitting that
the boss is a rodent), you will see Figure 10-5.

Now, log out and log in as user dhurwitz, and you’ll see just the content of
pnlEmployee. Log in again as user jliberty, and you won’t see either panel because
customers don’t need to see employee-specific information. Of course, if you make a
user a member of both the Manager and Employee roles, she would see both panels.

Navigation
The front page of your site is looking pretty good. Users can identify themselves, and
see the custom content. The master page is working as planned, and each page iden-
tifies itself appropriately. The next thing to do is add some navigation tools so that
users can find their way around, which means you have to create a site map. Close
the browser if it is open, and select Website ➝ Add New Item, and choose Site Map.
Accept the default name of Web.sitemap.

As you learned in Chapter 6, the site map is an XML file, and you have to create it
manually—the IDE won’t do it for you. Open the web.sitemap file, and replace the
default boilerplate with the highlighted code in Example 10-7.

 </div>
</asp:Panel>
<asp:Panel ID="pnlManager" runat="server" Visible="false" >
 <h3>Manager Information</h3>
 <div class="TextNormal">
 This panel should only be visible to users are a members of the
 Manager role. Turning on the visibility of this Panel occurs in the
 Page_Load event handler.
 </div>
</asp:Panel>

Example 10-6. Controlling visibility based on roles in Home.aspx.vb

Protected Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 Me.Master.PageSubTitle.Text = "Home"

 ' control the visibility of sections restricted to specific roles
 pnlManager.Visible = User.IsInRole("Manager")
 pnlEmployee.Visible = User.IsInRole("Employee")
End Sub

Example 10-5. Role-specific content in Home.aspx (continued)

352 | Chapter 10: Putting It All Together

Now that you have the site map file, you’ll add the navigation controls to the master
page. Add the following code to MasterPage.master, in the same table cell and after
the LoginView control:

<hr />
<asp:SiteMapDataSource ID="SiteMapDataSource1" runat="server"
 ShowStartingNode="false" />
<asp:Menu ID="Menu1" runat="server" DataSourceID="SiteMapDataSource1"
 CssClass="MenuText" />

Figure 10-5. If you log in as a member of the Manager role, you’ll see the manager-specific
information.

Example 10-7. Web.sitemap

<?xml version="1.0" encoding="utf-8" ?>
<siteMap xmlns="http://schemas.microsoft.com/AspNet/SiteMap-File-1.0" >
 <siteMapNode title="Root" >
 <siteMapNode url="~/Home.aspx" title="Home" description="Home page" />
 <siteMapNode url="~/Products.aspx" title="Products"
 description="Products offered by AdventureWorks" />
 <siteMapNode url="~/Cart.aspx" title="Shopping Cart"
 description="Items selected for purchase" />
 <siteMapNode url="~/Purchase.aspx" title="Purchase"
 description="Purchase your selected items" />
 </siteMapNode>
</siteMap>

Navigation | 353

In this case, you’re using a Menu control, rather than a TreeView. Note that the
DataSourceID property of the Menu control points to the SiteMapDataSource control
that you just created. You’ve set the control’s ShowStartingNode property of the
SiteMapDataSource control to false to suppress display of the root node in the menu.

You don’t want anonymous users to be able to use the menu, so add the following
code to the MasterPage.master.vb Page_Load to disable the menu if the user is not
logged in:

If Page.User.Identity.IsAuthenticated = False Then
 Menu1.Enabled = False
End If

Anonymous users will be able to see the menu; they just won’t be able to click any-
thing on it.

At this point, a user could bypass the login by entering the URL of any of the other
pages directly into the browser. To prevent this, add the following code to the Page_
Load method of every page in the web site except Home and Login (which are already
taken care of):

If User.Identity.IsAuthenticated = False Then
 Response.Redirect("login.aspx")
End If

Go ahead and try out the site now, to make sure everything is working. When you
first see the Home page, you’ll see that the navigation menu is disabled. Try entering
cart.aspx in the address field of your browser. You’ll see that you’re taken back to
the Login page instead.

One other navigation aid that you can add is setting the page subtitle in the master
page, to identify to the user where they are. You have already done this for the Home
and Login pages. For the rest of the pages, add the MasterType directive to the top of
the relevant markup file:

<%@ MasterType TypeName="MasterPage" %>

While in each page markup file, also set the title attribute of the Page directive.

Then go to the Page_Load method of each page code-behind file and add a line simi-
lar to the following (for the Purchase page), which sets the page subtitle:

Me.Master.PageSubTitle.Text = "Purchase"

Most real-world sites would have a somewhat deeper menu structure
and so might benefit from a SiteMapPath control to provide bread-
crumbs. This would be especially true if the Home page were truly the
root node.

Test out everything to see how it works.

354 | Chapter 10: Putting It All Together

Products Page
The intent of the Products page is to allow the user to select a product category, and
then see a grid displaying all the products in that category. The user can select any of
these products to see more detail about that product, and if she wants, she can add
that item to the shopping cart by clicking on a button.

This page has several data-bound controls: a RadioButtonList for selecting the prod-
uct category, a GridView for displaying the products (filtered by category), and a
DetailsView for displaying details about the currently selected item.

In addition, visibility of some of the controls is turned off, depending on circum-
stances. Initially, only the RadioButtonList is visible. Once the user has selected a cat-
egory, the GridView is made visible. When the user selects a product from the
GridView, the DetailsView and its associated button for adding the item to the cart
are made visible.

Open Products.aspx. You will start with a data source control that will power all the
other controls. Go to Source view, if not there already, and drag a SqlDataSource con-
trol from the Data section of the Toolbox into the Content control on the page. Set
the control’s ID to sqlCategories. Switch to Design view and click on the Smart Tag.
Configure it to point to the AdventureWorks database—if you did the examples in
Chapter 4, you may still have a data connection set up that refers to Adventure-
Works.mdf. If not, you should probably flip back to Chapter 4 and review the sec-
tion on creating a database connection. In the “Configure the Select Statement”
portion of the Wizard, select the “Specify a custom SQL statement” radio button.
After you click Next, enter the following custom statement:

select Name, ProductCategoryID from Production.ProductCategory order by Name

You could have built this statement in the Wizard, but remember from Chapter 4
that the IDE doesn’t automatically include the Production schema in the Select state-
ment, so this custom statement is easier. Test the query to make sure everything is
working, and finish the Wizard.

Drag a RadioButtonList control from the Standard section of the Toolbox onto the
content section of the page. Set its ID to rblCategories. In Design view, click on its
Smart Tag and select Choose Data Source. In the Data Source Configuration Wiz-
ard, select sqlCategories as the data source, Name as the data field to display, and
ProductCategoryID as the data field for the value, as shown in Figure 10-6.

If none of the fields are visible in the drop-down menus, click on the
Refresh Schema link, indicated with the arrow in Figure 10-6.

Products Page | 355

Set the RepeatDirection property of rblCategories to Horizontal, and the
AutoPostBack property to True, so that the page will post back as soon as a change is
made (later you will add AJAX features to avoid the flicker), and the CssClass prop-
erty to LabelSmall.

Run the web site, log in, and go to the Products page. You will see a set of four radio
buttons, as shown in Figure 10-7.

Stop the application, and then drag another SqlDataSource control onto the content
area to be the data source for the products grid. Set its ID to sqlProducts. This data
source will return all the products of the category specified in the radio buttons, so
you need to pass the value of the selected radio button to the data source as a param-
eter. Unfortunately, the Data Source Configuration Wizard shown in Figure 10-6
does not do parameterized queries, so you need to enter the code directly into Source
view, as shown in the following code snippet:

<asp:SqlDataSource id="sqlProducts" runat="server"
 ConnectionString=
 "<%$ ConnectionStrings:AdventureWorksConnectionString %>">
 <SelectParameters>
 <asp:ControlParameter ControlID="rblCategories"
 Name="ProductCategoryID"
 PropertyName="SelectedValue" />
 </SelectParameters>
</asp:SqlDataSource>

Figure 10-6. If you can’t see any of the data fields in the drop-down menu controls, click the
“Refresh Schema” link to see them.

356 | Chapter 10: Putting It All Together

The ConnectionString attribute points to the previously configured connection
string. Your connection string may have a different name than that shown here. The
SelectParameters element specifies that the parameter will be called
ProductCategoryID and will come from the SelectedValue property of the
rblCategories control.

But where is the SQL Select command, and where is this parameter used? You could
declare a SelectCommand attribute, as you did for the first SqlDataSource, but this
query is sort of long and complex, with a subquery as well as the parameter. So you
will set the SelectCommand property of the control programmatically in the Page_Load
of the Products page. Open the Page_Load method in Products.aspx.vb, and add the
following code:

Dim strCommand As String = String.Empty
strCommand = "select ProductID, Name, ProductNumber, ListPrice from " + _
 "Production.Product "
strCommand += "where ProductSubcategoryID in "
strCommand += "(select ProductSubcategoryID from " + _
 "Production.ProductSubcategory "
strCommand += "where ProductCategoryID = "
strCommand += "@ProductCategoryID)"
sqlProducts.SelectCommand = strCommand

Figure 10-7. Once you’ve logged in and navigated to the Products page, you’ll see the list of product
radio buttons.

Products Page | 357

The parameter, ProductCategoryID (highlighted in the above code snippet), preceded
by the @ character, assumes the value of the selected radio button. When the page
first loads and none of the radio buttons are selected, this query returns nothing, so
the GridView does not display. But as soon as a value is selected, the query returns
rows and they display in the GridView.

To see this, drag a GridView control from the Data section of the Toolbox onto the
content area. Set its ID property to gvProducts and its DataKeyNames property to
ProductID. In Design view, click on its Smart Tag and set its Data Source to be
sqlProducts. While the Smart Tag is open, check the Enable Paging, Enable Sorting,
and Enable Selection checkboxes, as shown in Figure 10-8.

Figure 10-8. After you’ve selected the data source, and enabled Paging, Sorting, and Selection, the
gvProducts GridView will look like this.

358 | Chapter 10: Putting It All Together

Click on the Edit Columns link in the Smart Tag to specify the columns from the
SELECT query: ProductID, Name, ProductNumber, and ListPrice. Be sure to uncheck
the Auto-generate fields checkbox. Although you want all the fields from the query
to display, manually adding the columns to the GridView allows you to fully specify
the appearance and behavior of each column.

As you add each field from the query, make sure BoundField is selected in the Avail-
able fields list, and then click the Add button. For the first column, set the DataField
for this BoundField to ProductID, the SortExpression to ProductID, the HeaderText to
ID, and the ItemStyle Width to 50px, as shown in Figure 10-9. Then add each of the
other columns in the same way.

Alternatively, you can declare all the fields directly in Source view, or any combina-
tion of techniques that works for you. In any case, you should end up with the fol-
lowing declaration for the products GridView, including several attributes of the
GridView itself and all the columns within the <Columns> element:

<asp:GridView id="gvProducts" runat="server"
 DataSourceID="sqlProducts" DataKeyNames="ProductID"
 AllowSorting="True" AllowPaging="True"
 AutoGenerateColumns="False"
 HeaderStyle-CssClass="TableColumnHeading"
 RowStyle-CssClass="TableCells">

Figure 10-9. Specify the ProductID bound field in the Fields dialog box.

Products Page | 359

 <Columns>
 <asp:CommandField ShowSelectButton="True" ItemStyle-Width="50"
 ControlStyle-CssClass="ButtonSelect" />
 <asp:BoundField DataField="ProductID" HeaderText="ID"
 SortExpression="ProductID">
 <ItemStyle Width="50px" />
 </asp:BoundField>
 <asp:BoundField DataField="Name" HeaderText="Name"
 SortExpression="Name">
 <ItemStyle Width="225px" />
 </asp:BoundField>
 <asp:BoundField DataField="ProductNumber"
 HeaderText="Product Number"
 SortExpression="ProductNumber">
 <ItemStyle Width="90px" />
 </asp:BoundField>
 <asp:BoundField DataField="ListPrice" HeaderText="Cost"
 SortExpression="ListPrice"
 ItemStyle-CssClass="TableNumberDecimal"
 HeaderStyle-CssClass="TableColumnHeadingRight">
 <ItemStyle Width="60px" />
 </asp:BoundField>
 </Columns>
</asp:GridView>

The DataKeyNames attribute is very important. It specifies the name (or names) of the
field(s) that make up the primary key for the items displayed. In this example, the
primary key is a single field, ProductID.

As you can see, there are many CSS-related attributes, all of which allow you to
apply a style to a specific type of element in the grid.

Now run the site, log in, navigate to the Products page, and select a category. You’ll
see that all the products for that category are listed in the grid.

Now you need to display the item details when the user selects an item from the grid.
Drag a Panel control onto the page, inside the Content area but after gvProducts. Set
its ID to pnlProduct. Inside the Panel is going to be a layout table with a DetailsView
control data bound to another SqlDataSource.

The DetailsView control has not been used previously in this book. It is a databound
control, similar to the GridView, but it is used to display or edit a single record at a
time. In this example, it displays the details about the single record selected from the
GridView.

The contents of the pnlProduct are listed in Example 10-8.

Example 10-8. Panel pnlProduct on Products page

<asp:Panel id="pnlProduct" runat="server" Visible="false">
 <table width="100%">
 <tr>
 <td valign="top">

360 | Chapter 10: Putting It All Together

 <asp:Button id="btnAddToCart" runat="server"
 Text="Add To Cart" OnClick="btnAddToCart_Click"
 CssClass="ButtonText" />
 <div class="ListHeading">Items In Cart</div>
 <asp:Label ID="lblCart" runat="server" CssClass="TextSmall"
 Width="90"/>
 </td>
 <td valign="top">
 <asp:SqlDataSource id="sqlDetailsView" runat="server"
 ConnectionString=
 "<%$ ConnectionStrings:AdventureWorksConnectionString %>">
 <SelectParameters>
 <asp:ControlParameter ControlID="gvProducts"
 Name="ProductID"
 PropertyName="SelectedDataKey.Values['ProductID']" />
 </SelectParameters>
 </asp:SqlDataSource>
 <asp:DetailsView id="DetailsView1" runat="server"
 DataSourceID="sqlDetailsView" DataKeyNames="ProductID"
 AutoGenerateRows="false"
 CssClass="TableCells" BorderWidth="0"
 FieldHeaderStyle-CssClass="TableRowHeading"
 CellSpacing="2" CellPadding="2" Width="500px" Height="50px">
 <Fields>
 <asp:BoundField DataField="ProductID"
 HeaderText="Product ID:"
 SortExpression="ProductID" />
 <asp:BoundField DataField="Name" HeaderText="Name:"
 SortExpression="Name" />
 <asp:BoundField DataField="ProductNumber"
 HeaderText="Product #:"
 SortExpression="ProductNumber" />
 <asp:BoundField DataField="ListPrice" HeaderText="Cost:"
 SortExpression="ListPrice"
 DataFormatString="{0:C}" HtmlEncode="false"/>
 <asp:BoundField DataField="Color" HeaderText="Color:"
 SortExpression="Color" />
 <asp:BoundField DataField="CategoryName"
 HeaderText="Category:"
 SortExpression="CategoryName" />
 <asp:BoundField DataField="SubcategoryName"
 HeaderText="SubCategory:"
 SortExpression="SubcategoryName" />
 <asp:BoundField DataField="Description"
 HeaderText="Description:"
 SortExpression="Description" />
 </Fields>
 </asp:DetailsView>
 </td>
 </tr>
 </table>
</asp:Panel>

Example 10-8. Panel pnlProduct on Products page (continued)

Products Page | 361

As with the previous parameterized query, you will set the SelectCommand for the data
source, sqlDetailsView, in the Page_Load of the Products page. Add the following
code to the Page_Load method, after setting the SelectCommand property of the previ-
ous data source:

strCommand = String.Empty
strCommand += "select product.*, subcat.ProductSubcategoryID, " + _
 "subcat.Name as SubcategoryName, "
strCommand += "cat.ProductCategoryID, cat.Name as CategoryName, "
strCommand += "model.Name as ModelName, model.CatalogDescription, " + _
 "model.Instructions, "
strCommand += "description.Description "
strCommand += "from Production.Product product "
strCommand += "join Production.ProductSubcategory subcat on " + _
 "product.ProductSubcategoryID = subcat.ProductSubcategoryID "
strCommand += "join Production.ProductCategory cat on subcat.ProductCategoryID = " +_
 "cat.ProductCategoryID "
strCommand += "join Production.ProductModel model on product.ProductModelID = " + _
 "model.ProductModelID "
strCommand += "join Production.ProductModelProductDescriptionCulture culture on " + _
 "model.ProductModelID = culture.ProductModelID "
strCommand += "join Production.ProductDescription description on " + _
 "culture.ProductDescriptionID = description.ProductDescriptionID "
strCommand += "where product.ProductID = @ProductID and culture.CultureID = 'en' "
sqlDetailsView.SelectCommand = strCommand

Inside the Panel is also a Button, btnAddToCart. Switch to Design view and double-
click the button to open the code-behind in the skeleton of an event handler, ready
for you to type. The event handler code is included in Example 10-9. This method
retrieves the ProductID of the selected item using the Value of the SelectedDataKey
property of the GridView. Then it checks if the Session object exists, and in either
case updates it with the currently selected item as a comma-separated string. It also
displays the contents of the cart in a Label control. (The space trailing the comma
allows the content of the Label control to wrap when many items are listed.)

While you’re in the code-behind, add the single line event handler for the
SelectedIndexChanged event of the grid gvProducts, also listed in Example 10-9. This
displays the details of the selected item.

Also add an event handler to gvProducts for the RowDataBound event. This allows you
to apply formatting to the cost display. There is an easier way to set the format in
this case, which you will use later in the chapter, but this demonstrates a really pow-
erful technique that comes in handy with almost every project. That technique
involves looking at each row as it is bound to the data and applying some formatting
on a row-by row basis. It is even possible to make different formatting decisions
based on the content of each row.

362 | Chapter 10: Putting It All Together

Finally, add an event handler for the SelectedIndexChanged of the RadioButtonList
rblCategories, which hides the detail Panel when a new category is selected. This
prevents the details of the previous item remaining displayed.

— S Q L C H E AT S H E E T —
Joins

All of the queries you have seen in this book so far have been simple SELECT statements
from a single table. The true strength of a relational database comes from using multi-
ple tables to contain normalized data. Data that has been normalized essentially means
there is no duplicate data.

Suppose you have a database containing employment information. Each employee has
not only a job title but also a job description. Rather than have identical job descrip-
tions in the Employee table for every employee with the same job, it is much better to
have the job titles and descriptions in a separate Jobs table, and then refer to that Jobs
record in the Employees table. There is said to be a relationship between the Employees
table the Jobs table.

Now, however, when you want to query the data, you must join the two tables back
together in your query statement. This is done with the SQL keyword JOIN.

The JOIN keyword alone, as used in the preceding snippet, is the default join type,
known as an inner join. This means that any rows in either table that do not match the
selection criteria will not be included in the results.

There are many circumstances where you do not want to omit these records, in which
case you must use an outer join. There are several different types of outer joins, includ-
ing left, right, cross, and full, depending on which data specifically you want to include
and which to omit.

For a complete discussion on SQL queries in general and joins in particular, we highly
recommend Transact-SQL Programming, by Kevin Kline et al. (O’Reilly). Although
this book is a bit dated, only covering up through SQL Server 7.0, the basic syntax has
not changed, and this book remains a primary reference for SQL programming.

Example 10-9. Products.aspx.vb event handlers

Protected Sub btnAddToCart_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs)
 ' the contents of the cart will be saved in a Session object as
 ' a string of comma-delimited values of ProductID's
 Dim strCart As String = String.Empty
 Dim strProductId As String = gvProducts.SelectedDataKey.Value.ToString()

 If Session("Cart") Is Nothing Then
 strCart = strProductId
 Else
 strCart = Session("Cart").ToString() + ", " + strProductId
 End If

Adding AJAX | 363

The finished Products page, with several items added to the cart, is shown in
Figure 10-10.

Adding AJAX
It is pathetically easy to spice up the performance of the Products page with a little
help from AJAX. All you need to do is wrap the entire contents of the Content con-
trol inside an UpdatePanel control. You can do this by dragging an UpdatePanel con-
trol from the AJAX Extensions section of the Toolbox onto the page in Design view,
and then dragging all the existing content inside the UpdatePanel. Alternatively, go to
Source view and add the following highlighted lines of code, wrapping the content of
the Content control.

 Session("Cart") = strCart
 lblCart.Text = strCart
End Sub

Protected Sub gvProducts_SelectedIndexChanged(ByVal sender As Object, _
 ByVal e As System.EventArgs)
 Handles gvProducts.SelectedIndexChanged
 pnlProduct.Visible = True
End Sub

Protected Sub gvProducts_RowDataBound(ByVal sender As Object, _
 ByVal e As System.Web.UI.WebControls.GridViewRowEventArgs) _
 Handles gvProducts.RowDataBound
 Dim str As String = String.Empty
 If e.Row.RowType = DataControlRowType.DataRow Then
 Dim cell As TableCell = e.Row.Cells(4) ' ListPrice cell
 Dim nCost As Decimal
 Try
 nCost = CType(cell.Text, Decimal)
 str = nCost.ToString("##,##0.00", Nothing)
 Catch ex As ApplicationException
 str = "n.a."
 Finally
 cell.Text = str
 End Try
 End If
End Sub

Protected Sub rblCategories_SelectedIndexChanged(ByVal sender As Object, _
 ByVal e As System.EventArgs)
 Handles rblCategories.SelectedIndexChanged
 pnlProduct.Visible = False
End Sub

Example 10-9. Products.aspx.vb event handlers (continued)

364 | Chapter 10: Putting It All Together

<asp:Content ID="Content1" ContentPlaceHolderID="ContentPlaceHolder1"
 Runat="Server">
 <asp:UpdatePanel id="UpdatePanel1" runat="server">
 <ContentTemplate>

 ... all the content goes here ...

 </ContentTemplate>
 </asp:UpdatePanel>
</asp:Content>

The ScriptManager control should be on the master page, so you don’t have to add
one to every content page. So open MasterPage.master and drag a ScriptManager con-
trol onto the page, if it is not already there.

When you put all the content inside the UpdatePanel, the IDE may
complain all of a sudden about the validity of ASP.NET controls.
Ignore this; it will work fine.

However, this “feature” of the IDE does make it more difficult to
develop, because IntelliSense will not work. That is why we waited
until the end of developing this page to add the AJAX.

Figure 10-10. The Products page is now finished, and has several items added to the cart.

Cart Page | 365

Cart Page
The Cart page displays the contents of the cart and allows you to remove items from
the cart. It also provides a button to purchase the items in the cart, which would, of
course, take you to the Purchase page.

Of course, a full-featured cart would provide much more functionality
than the simple cart shown here. For example, your fully featured
commercial site might uses personalization to remember what was
added to the cart in previous sessions and restore that information in a
new session. It would almost certainly allow the user to change the
quantity ordered of a given item, not to mention things such as size or
color.

Open Cart.aspx. Drag a SqlDataSource control onto the content area of the page. Set
its ID to sqlCart. Configure it similar to the SqlDataSource in Example 10-8. Here is
the markup for the control. It looks complex, but really it is a straightforward SELECT
statement against the Production.Product table, with five joins:

<asp:SqlDataSource ID="sqlCart" runat="server"
 ConnectionString="<%$ ConnectionStrings:AdventureWorksConnectionString %>"
 SelectCommand= "select product.ProductID, product.Name, product.ProductNumber,
 product.Color,
 subcat.Name as SubcategoryName, cat.Name as CategoryName,
 description.Description
 from Production.Product product
 join Production.ProductSubcategory subcat on
 product.ProductSubcategoryID = subcat.ProductSubcategoryID
 join Production.ProductCategory cat on
 subcat.ProductCategoryID = cat.ProductCategoryID
 join Production.ProductModel model on
 product.ProductModelID = model.ProductModelID
 join Production.ProductModelProductDescriptionCulture culture on
 model.ProductModelID = culture.ProductModelID
 join Production.ProductDescription description on
 culture.ProductDescriptionID = description.ProductDescriptionID">
</asp:SqlDataSource>

This query needs a WHERE clause. The parameter in the WHERE clause needs to
come from the Session object. ASP.NET actually makes this really easy under some
circumstances—but not these circumstances, as we will now describe.

You saw previously in Example 10-8 the use of the <SelectParameters> element of
the SqlDataSource, reproduced here, with a parameter based on the value of another
control on the page:

<SelectParameters>
 <asp:ControlParameter ControlID="gvProducts"
 Name="ProductID" PropertyName="SelectedDataKey.Values['ProductID']" />
</SelectParameters>

366 | Chapter 10: Putting It All Together

There are other types of SelectParameters controls, including a SessionParameter,
which comes from a Session object. The reason that will not work here is due to a
“quirk” of the SQL used to construct the query. I’ll explain.

The cart is stored in a string as a comma-separated list of ProductIDs, which are
stored in the database as integers. The query sent to the database has a where clause
using the in keyword, as in:

where product.ProductID in (753,845,143) and culture.CultureID = 'en'

SQL Server knows that ProductID is an integer and is able to parse the contents of the
parenthesis as a list of integers. However, when you use the SessionParameter con-
trol, it encloses the contents of the parenthesis with quotes, as in:

where product.ProductID in ("753,845,143") and culture.CultureID = 'en'

That makes it a string, and SQL Server cannot parse it as a set of integers. There may
be a way to deal with this in SQL, but it is easier, and more instructive, to work
around this by hooking in the Selecting event of the SqlDataSource control. This
event is raised just before the query is sent to the database, and is a convenient time
to modify the query.

Add the code from Example 10-10 to handle this event (as well as events for two con-
trols you will place on the page in just a moment). It retrieves the Session object and
constructs the where clause, setting the CommandText subproperty of the event argu-
ment’s Command property. Because this event is raised before the query is executed,
changing the CommandText of the query allows you to modify the query before it is
run; using this technique, you can have the WHERE clause refer to a specific ProductID.

Example 10-10. Cart.aspx.vb event handlers

Protected Sub sqlCart_Selecting(ByVal sender As Object, _
 ByVal e As System.Web.UI.WebControls.SqlDataSourceSelectingEventArgs) _
 Handles sqlCart.Selecting

 Trace.Warn("sqlCart_Selecting") ' to aid in debugging

 Dim strCart As String = String.Empty
 If Session("Cart") IsNot Nothing Then
 strCart = Session("Cart").ToString
 e.Command.CommandText &= " where product.ProductID in (" + _
 strCart + _
 ") and culture.CultureID = 'en' "
 Else
 e.Cancel = True
 End If
End Sub

Protected Sub btnPurchase_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) _
 Handles btnPurchase.Click

Cart Page | 367

Now drag a GridView onto the page, setting its ID to gvCart. Configure it similar to
the previous GridView. Here is the markup for gvCart:

<asp:GridView ID="gvCart" runat="server"
 DataSourceID="sqlCart"
 AllowPaging="True" AllowSorting="True" Width="100%"
 AutoGenerateColumns="False"
 HeaderStyle-CssClass="TableColumnHeading"
 RowStyle-CssClass="TableCells">
 <Columns>
 <asp:CommandField ShowSelectButton="True" SelectText="Remove"
 ControlStyle-CssClass="ButtonSelect" ItemStyle-Width="50px"
 ItemStyle-HorizontalAlign="Center"/>
 <asp:BoundField DataField="ProductID" HeaderText="ID"
 ItemStyle-Width="50px"/>

 Response.Redirect("Purchase.aspx")
End Sub

Protected Sub gvCart_SelectedIndexChanged(ByVal sender As Object, _
 ByVal e As System.EventArgs) _
 Handles gvCart.SelectedIndexChanged
 Dim strProductID As String = gvCart.SelectedRow.Cells(1).Text
 If Session("Cart") IsNot Nothing Then
 ' remove the selected ProductID from the Session string
 ' Retrieve the session string.
 Dim strCart As String = Session("Cart").ToString()
 Dim arIDs As String() = strCart.Split(New [Char]() {","c})

 ' iterate through the ID's comprising the string array
 ' rebuild the cart string, leaving out the matching ID
 strCart = String.Empty
 For Each str As String In arIDs
 ' use Trim to remove leading and trailing spaces
 If str.Trim() <> strProductID.Trim() Then
 strCart += str + ", "
 End If
 Next

 ' remove the trailing space and comma
 If strCart.Length > 1 Then
 strCart = strCart.Trim()
 strCart = strCart.Substring(0, strCart.Length - 1)
 End If

 ' put it back into Session
 Session("Cart") = strCart

 ' rebind the GridView, which will force the SqlDataSource to requery
 gvCart.DataBind()
 End If ' close for test for Session
End Sub

Example 10-10. Cart.aspx.vb event handlers (continued)

368 | Chapter 10: Putting It All Together

 <asp:BoundField DataField="ProductNumber" HeaderText="Product Number"
 ItemStyle-Width="90px" />
 <asp:BoundField DataField="Color" HeaderText="Color"
 ItemStyle-Width="60px" />
 <asp:BoundField DataField="CategoryName" HeaderText="Cat"
 ItemStyle-Width="75px" />
 <asp:BoundField DataField="SubcategoryName" HeaderText="SubCat"
 ItemStyle-Width="75px" />
 <asp:BoundField DataField="Description" HeaderText="Description" />
 </Columns>
</asp:GridView>

Below the GridView place an HTML
 element and an ASP.NET Button control
called btnPurchase.

<asp:Button ID="btnPurchase" runat="server" Text="Purchase Items in the Cart"
 CssClass="ButtonText"/>

The code to handle the Click event of this button is included in Example 10-10. All
this event handler does is redirect readers to the Purchase page, which you’ll create
shortly.

The Remove button on each row of the GridView is not a normal ASP.NET Button
control, but rather a SelectButton with its SelectText property set to Remove. Click-
ing a SelectButton in a GridView selects that row of the grid. This is handled with
the gvCart_SelectedIndexChanged event handler, included in Example 10-10.

Run through the app, logging in and adding some items to the cart. Then switch to
the Cart page. You will see something similar to Figure 10-11.

Purchase Page
Clicking on the Purchase button on the Cart page brings you to the Purchase page.
This page is used to gather billing and shipping information from the customer. It
has a layout table with a bunch of TextBox controls, a couple of RadioButtonLists, a
Buy Now button, and a bunch of associated validation controls.

The first row of the layout table is just a heading. The second row collects the Name.
This is a required field, so it has a RequiredFieldValidator.

<table border="0" class="TableRowHeading">
 <tr>
 <td colspan="4">
 Billing Information
 </td>
 </tr>
 <tr>
 <td>Name</td>
 <td colspan="4">
 <asp:TextBox ID="txtName" runat="server" Width="250" />

Purchase Page | 369

 <asp:RequiredFieldValidator ID="rfName" runat="server"
 ControlToValidate="txtName"
 Display="Dynamic" ErrorMessage="Name is a required field."
 CssClass="ValidationError">*</asp:RequiredFieldValidator></td>
 </tr>

All the validation controls on this page will use Dynamic Display, so room will only
be allocated on the page if it is necessary to display the validation text. For this and
all the other validation controls, the validation text is simply an asterisk to display
next to the invalid control. A ValidationSummary control at the bottom of the page
will gather all the ErrorMessages into a single location.

The next row is the Address, which is very similar to the Name row:

<tr>
 <td>Address</td>
 <td colspan="3">
 <asp:TextBox ID="txtAddress" runat="server" Width="250" />
 <asp:RequiredFieldValidator ID="rfAddress" runat="server"
 ControlToValidate="txtAddress"
 Display="Dynamic" ErrorMessage="Address is a required field."
 CssClass="ValidationError">*</asp:RequiredFieldValidator></td>
</tr>

Figure 10-11. Here’s what the cart page looks like after you’ve added some items to the cart.

370 | Chapter 10: Putting It All Together

Next is a row for both City and State. City is a straightforward TextBox, just like
Name and Address. However, the State control is a DropDownList that is populated
from the database. A SqlDataSource is used to populate this DropDownList and
another one further down used as part of the shipping address with a list of state
names from the database. It is a very simple query; there are no parameters
necessary.

<tr>
 <td>City</td>
 <td style="width: 181px">
 <asp:TextBox ID="txtCity" runat="server" />
 <asp:RequiredFieldValidator ID="rfCity" runat="server"
 ControlToValidate="txtCity"
 Display="Dynamic" ErrorMessage="City is a required field."
 CssClass="ValidationError">*</asp:RequiredFieldValidator>
 </td>
 <td>
 <asp:SqlDataSource ID="sqlStates" runat="server"
 ConnectionString=
 "<%$ ConnectionStrings:AdventureWorksConnectionString %>"
 SelectCommand="SELECT StateProvinceCode, [Name]
 FROM Person.StateProvince
 WHERE CountryRegionCode = 'US' order by [Name]">
 </asp:SqlDataSource>
 <asp:DropDownList ID="ddlStates" runat="server"
 DataSourceID="sqlStates"
 DataTextField="Name" DataValueField="StateProvinceCode" />
 </td>
</tr>

The next row gathers the zip code, validated by a RegularExpressionValidator to be a
valid U.S. zip code, as well as being required. The regular expression requires either
five digits or five digits plus four more separated by a dash.

<tr>
 <td>Zip</td>
 <td style="width: 181px">
 <asp:TextBox ID="txtZip" runat="server" />
 <asp:RequiredFieldValidator ID="rfZip" runat="server"
 ControlToValidate="txtZip"
 Display="Dynamic" ErrorMessage="Zip is a required field."
 CssClass="ValidationError">*</asp:RequiredFieldValidator>
 <asp:RegularExpressionValidator ID="reZip" runat="server"
 ErrorMessage="Invalid Zip format"
 ControlToValidate="txtZip"
 Display="Dynamic"
 ValidationExpression="^\d{5}$|^\d{5}-\d{4}$"
 CssClass="ValidationError">*</asp:RegularExpressionValidator>
 </td>
</tr>

Next is a row to gather credit card information. A RadioButtonList allows the user a
choice of credit card type, and again validates that the user makes a choice.

Purchase Page | 371

<tr>
 <td>Card</td>
 <td colspan="3" >
 <asp:RadioButtonList ID="rblCardType" runat="server"
 RepeatDirection="Horizontal">
 <asp:ListItem Value="am" Text="American Express" />
 <asp:ListItem Value="d" Text="Discover" />
 <asp:ListItem Value="mc" Text="MasterCard" />
 <asp:ListItem Value="v" Text="Visa" />
 </asp:RadioButtonList>
 <asp:RequiredFieldValidator ID="rfCreditCard" runat="server"
 ErrorMessage="Credit Card type is missing."
 ControlToValidate="rblCardType" Display="Dynamic"
 InitialValue=""
 CssClass="ValidationError">*</asp:RequiredFieldValidator>
 </td>
</tr>

The next row gathers the credit card number and security code. Both are required
and both use a RegularExpressionValidator to ensure valid formats.

<tr>
 <td>CC #</td>
 <td style="width: 181px">
 <asp:TextBox ID="txtCCNumber" runat="server" />
 <asp:RequiredFieldValidator ID="rfCCNumber" runat="server"
 ControlToValidate="txtCCNumber"
 Display="Dynamic"
 ErrorMessage="Credit Card Number is a required field."
 CssClass="ValidationError">*</asp:RequiredFieldValidator>
 <asp:RegularExpressionValidator ID="reCCNumber" runat="server"
 ErrorMessage="Invalid Credit Card Number"
 ControlToValidate="txtCCNumber"
 Display="Dynamic"
 ValidationExpression=
 "^(\d{4}-){3}\d{4}$|^(\d{4}){3}\d{4}$|^\d{16}$"
 CssClass="ValidationError">*</asp:RegularExpressionValidator>
 </td>
 <td align="right">Security Code</td>
 <td>
 <asp:TextBox ID="txtSecurityCode" runat="server" />
 <asp:RequiredFieldValidator ID="rfSecurityCode" runat="server"
 ControlToValidate="txtSecurityCode"
 Display="Dynamic"
 ErrorMessage="Security Code is a required field."
 CssClass="ValidationError">*</asp:RequiredFieldValidator>
 <asp:RegularExpressionValidator ID="reSecurityCode" runat="server"
 ErrorMessage="Invalid Security Code"
 ControlToValidate="txtSecurityCode"
 Display="Dynamic"
 ValidationExpression="^\d{3}$"
 CssClass="ValidationError">*</asp:RegularExpressionValidator>
 </td>
</tr>

372 | Chapter 10: Putting It All Together

The credit card number formats allowed are any of the following:

1234-1234-1234-1234
1234 1234 1234 1234
1234123412341234

It drives me batty when web sites require a credit card number with no
spaces or dashes. It is so easy to accept those characters and just
remove them before submission, and it would greatly reduce input
errors. Long numbers are much easier to enter and read with interven-
ing spaces or dashes.

The security number is simply a three-digit number.

The next row contains a RadioButtonList to give the user the choice of shipping to
the billing address or a different shipping address. Depending on the selected value
of that control, a Panel control containing a field for the shipping address is either
made visible or not. The code for doing this is contained in an event handler for the
SelectedIndexChanged event of rblShippingAddress, included in Example 10-11.

<tr>
 <td colspan="2">
 Shipping Information
 </td>
 <td colspan="2">
 <asp:RadioButtonList ID="rblShippingAddress" runat="server"
 AutoPostBack="true" RepeatDirection="Horizontal">
 <asp:ListItem Value="billing" Text="Ship to Billing Address"
 Selected="True" />
 <asp:ListItem Value="different"
 Text="Ship to Different Address" />
 </asp:RadioButtonList>
 </td>
</tr>

AutoPostBack is set to true so that the page will respond immediately when the user
changes the selection. If a different address is required, then a Panel contained in the
next row is made visible.

<tr>
 <td colspan="4">
 <asp:Panel ID="pnlShippingAddress" runat="server" Visible="false" >
 <table border="0">
 <tr>
 <td>Address</td>
 <td colspan="3">
 <asp:TextBox ID="txtShippingAddress" runat="server"
 Width="250" />
 </td>
 </tr>
 <tr>
 <td>City</td>

Purchase Page | 373

 <td>
 <asp:TextBox ID="txtShippingCity" runat="server" />
 </td>
 <td>
 <asp:DropDownList ID="ddlShippingStates"
 runat="server"
 DataSourceID="sqlStates"
 DataTextField="Name"
 DataValueField="StateProvinceCode" />
 </td>
 <td>Zip</td>
 <td>
 <asp:TextBox ID="txtShippingZip" runat="server" />
 <asp:RegularExpressionValidator ID="reShippingZip"
 runat="server"
 ErrorMessage="Invalid Zip format"
 ControlToValidate="txtShippingZip"
 Display="Dynamic"
 ValidationExpression="^\d{5}$|^\d{5}-\d{4}$"
 CssClass="ValidationError">*
 </asp:RegularExpressionValidator>
 </td>
 </tr>
 </table>
 </asp:Panel>
 </td>
</tr>

Notice how this Panel control itself contains another table for laying out the controls
used to gather the shipping address.

Finally, there is a row to contain the ValidationSummary control.

<tr>
 <td colspan="4">
 <asp:ValidationSummary ID="ValidationSummary1" runat="server"
 CssClass="ValidationError" />
 </td>
</tr>

And one more row to contain the Button for completing the purchase.

 <tr>
 <td colspan="4">
 <asp:Button ID="btnBuy" runat="server" Text="Buy Now"
 CssClass="ButtonText" />
 </td>
 </tr>
</table>

When the Buy Now button is clicked, a real application would process the order,
updating the database as necessary. In our simple example, it will stash the order
info in Session in a Dictionary object, and then call the Confirm page for order confir-
mation. The event handler for the Buy Now button is included in Example 10-11.

374 | Chapter 10: Putting It All Together

Note that in order for the Dictionary object to be properly instantiated, you must
include the Imports statement at the top of Example 10-11.

Now run the web site and navigate to the Purchase page, as shown in Figure 10-12,
after filling in most of the fields along with an invalid zip code.

Example 10-11. Purchase.aspx.vb event handlers

Imports System.Collections.Generic

Protected Sub rblShippingAddress_SelectedIndexChanged(ByVal sender As Object, _
 ByVal e As System.EventArgs) _
 Handles rblShippingAddress.SelectedIndexChanged
 If rblShippingAddress.SelectedValue = "billing" Then
 pnlShippingAddress.Visible = False
 Else
 pnlShippingAddress.Visible = True
 End If
End Sub

Protected Sub btnBuy_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) _
 Handles btnBuy.Click
 ' stash all the info in a dictionary object going to Session
 Dim dictBuy As Dictionary(Of String, String) = _
 New Dictionary(Of String, String)
 dictBuy.Add("Name", txtName.Text)
 dictBuy.Add("Address", txtAddress.Text)
 dictBuy.Add("City", txtCity.Text)
 dictBuy.Add("State", ddlStates.SelectedValue)
 dictBuy.Add("Zip", txtZip.Text)
 dictBuy.Add("Card", rblCardType.SelectedValue)
 dictBuy.Add("CardNumber", txtCCNumber.Text)
 dictBuy.Add("SecurityCode", txtSecurityCode.Text)

 If rblShippingAddress.SelectedValue = "billing" Then
 dictBuy.Add("ShippingAddress", txtAddress.Text)
 dictBuy.Add("ShippingCity", txtCity.Text)
 dictBuy.Add("ShippingState", ddlStates.SelectedValue)
 dictBuy.Add("ShippingZip", txtZip.Text)
 Else
 dictBuy.Add("ShippingAddress", txtShippingAddress.Text)
 dictBuy.Add("ShippingCity", txtShippingCity.Text)
 dictBuy.Add("ShippingState", ddlShippingStates.SelectedValue)
 dictBuy.Add("ShippingZip", txtShippingZip.Text)
 End If

 Session("BuyerInfo") = dictBuy

 Response.Redirect("Confirm.aspx")
End Sub

Confirm Page | 375

This page would benefit from being wrapped inside an UpdatePanel, as
was done for the Products page. However, there is an unwanted inter-
action between the validation controls and the AJAX control, both of
which work with the use of client-side JavaScript. Therefore, we will
leave the AJAX off this page.

Confirm Page
The Confirm page in this example does nothing more than retrieve the two Session
objects, one containing the cart and one containing the buyer information, and dis-
play them on the page. The cart is displayed in a GridView and the buyer information
is displayed in a ListBox.

Again, the page contains an HTML table for layout. The first row contains a
GridView and its associated data source for the cart information.

<table>
 <tr>
 <td valign="top" class="ListHeading">Cart:</td>
 <td valign="top">
 <asp:SqlDataSource ID="sqlCartConfirm" runat="server"
 ConnectionString=
 "<%$ ConnectionStrings:AdventureWorksConnectionString %>"

Figure 10-12. The Purchase page looks like this after you’ve entered information, including an
invalid zip code, and then clicked Buy Now.

376 | Chapter 10: Putting It All Together

 SelectCommand= "select ProductID, Name, ProductNumber, Color,
 ListPrice
 from Production.Product " >
 </asp:SqlDataSource>

 <asp:GridView ID="gvCart" runat="server"
 DataSourceID="sqlCartConfirm"
 AllowPaging="True" AllowSorting="True"
 HeaderStyle-CssClass="TableColumnHeading"
 RowStyle-CssClass="TableCells"
 AutoGenerateColumns="false">
 <Columns>
 <asp:BoundField DataField="ProductID" HeaderText="ID" />
 <asp:BoundField DataField="Name" HeaderText="Name" />
 <asp:BoundField DataField="ProductNumber"
 HeaderText="Product #" />
 <asp:BoundField DataField="Color" HeaderText="Color" />
 <asp:BoundField DataField="ListPrice" HeaderText="Cost"
 DataFormatString="{0:F2}" HtmlEncode="false"/>
 </Columns>
 </asp:GridView>
 </td>
 </tr>

The SelectCommand of the SqlDataSource is updated with the contents of the Cart Ses-
sion object, exactly as was done for the Cart page, using the Selecting event of the
SqlDataSource control.

Protected Sub sqlCartConfirm_Selecting(ByVal sender As Object, _
 ByVal e As System.Web.UI.WebControls.SqlDataSourceSelectingEventArgs) _
 Handles sqlCartConfirm.Selecting

 Trace.Warn("sqlCartConfirm_Selecting") ' aid in debugging

 If Session("Cart") IsNot Nothing Then
 Dim strCart = Session("Cart").ToString
 e.Command.CommandText &= "where ProductID in (" + _
 strCart + ")"
 Else
 e.Cancel = True
 End If

End Sub

After a spacing row, the next row contains a ListBox for the buyer information.

 <tr>
 <td colspan="2"> </td>
 </tr>
 <tr>
 <td valign="top" class="ListHeading">Buyer Info:</td>
 <td valign="top">
 <asp:ListBox ID="lbBuyerInfo" runat="server" Rows="12"
 Width="250" />

Custom Error Pages | 377

 </td>
 </tr>
</table>

The ListBox is populated in Page_Load the first time the page is loaded.

Protected Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 If User.Identity.IsAuthenticated = False Then
 Response.Redirect("login.aspx")
 End If

 Me.Master.PageSubTitle.Text = "Confirmation"

 If Not IsPostBack Then
 lbBuyerInfo.Items.Clear()
 If Session("BuyerInfo") IsNot Nothing Then
 Dim dictBuyerInfo As Dictionary(Of String, String) = Nothing
 dictBuyerInfo = CType(Session("BuyerInfo"), _
 Dictionary(Of String, String))
 For Each key As String In dictBuyerInfo.Keys
 lbBuyerInfo.Items.Add(key + ": " + dictBuyerInfo(key))
 Next
 Else
 lbBuyerInfo.Items.Add("There is no buyer info.")
 End If
 End If

End Sub

In order for the Dictionary to work in this method, you need to add the following
line at the top of the code-behind file to import the proper namespace:

Imports System.Collections.Generic

The markup for this page is shown in Example 10-14 and the code-behind is in
Example 10-15.

Running the site and navigating through the entire purchase process brings you to
the confirmation page shown in Figure 10-13.

Custom Error Pages
In case of any errors, you don’t want your users to see the ugly generic error page
provided by ASP.NET, so you will add some custom error pages, just like you did in
Chapter 8. To do so, add the following section to the web.config file, within the
<system.web> section:

<!-- Valid values of customErrors mode: On, Off, RemoteOnly -->
<customErrors mode="RemoteOnly" defaultRedirect="CustomErrorPage.aspx">
 <error statusCode="400" redirect="CustomErrorPage400.aspx"/>
 <error statusCode="404" redirect="CustomErrorPage404.aspx"/>
 <error statusCode="500" redirect="CustomErrorPage500.aspx"/>
</customErrors>

378 | Chapter 10: Putting It All Together

This will provide for specific error pages to cover errors 400, “Bad Request,” the
ubiquitous 404, “Not Found,” and the dreaded 500, “Internal Server Error.” It will
also specify a generic error page for any error not specifically covered. Setting the
mode to RemoteOnly means while working on your local machine, you will see the
generic error page, with all its helpful information, but remote users will see your
custom error pages.

Notice that here the custom error pages have an extension of .aspx,
rather than the .htm used in Chapter 8. This is so they can take advan-
tage of the master pages.

Now you need to actually create those error pages. Add four new pages to the web
site called CustomErrorPage.aspx, CustomErrorPage400.aspx, CustomErrorPage404.
aspx, and CustomErrorPage500.aspx. Be sure to check the checkboxes for “Place
code in a separate file” and “Select master page.”

In the markup file for each of these new pages, add the following MasterType direc-
tive, after the Page directive but before the opening <asp:Content> tag:

<%@ MasterType TypeName="MasterPage" %>

This will allow each page to modify the master page, setting the page subtitle appro-
priately. To do this, add the following Page_Load method to each page:

Figure 10-13. Here’s the last page the user will see: the confirmation page. All the information from
the Cart and the Purchase page is passed here and displayed again.

Source Code Listings | 379

Protected Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 Me.Master.PageSubTitle.Text = "Error"
End Sub

Finally, add some content to each page to indicate what the error is and what to do
about it. While you are at it, add a HyperLink to take the user back to the Home page.

Summary
There you have it—a functional web site with user registration, data access, session
state, and a consistent look and feel, all coded by you. You can now go out and cre-
ate sites that you didn’t dream were possible just a short time ago.

Don’t let this be the end of your learning, though. Although you’re quite familiar
with most of the controls we’ve discussed, they also have plenty of properties that
you can still discover on your own. Experiment with the examples and exercises in
this book to see what’s possible. The Web is full of ASP.NET resources to continue
your education—the AJAX community is adding new extenders all the time, just to
pick one example. And, of course, there are other fine books out there, including
Programming ASP.NET, to help you learn about the advanced controls.

Source Code Listings
The style sheet, StyleSheet.css, is listed in Example 10-1.

The site map file, Web.sitemap, is listed in Example 10-7.

Cart Page

Example 10-12. Cart.aspx

<%@ Page Language="VB" MasterPageFile="~/MasterPage.master" AutoEventWireup="false"
 CodeFile="Cart.aspx.vb" Inherits="Cart" title="Cart" %>
<%@ MasterType TypeName="MasterPage" %>
<asp:Content ID="Content1" ContentPlaceHolderID="ContentPlaceHolder1"
 Runat="Server">
 <asp:SqlDataSource ID="sqlCart" runat="server"
 ConnectionString="<%$ ConnectionStrings:AdventureWorksConnectionString %>"
 SelectCommand= "select product.ProductID, product.Name,
 product.ProductNumber, product.Color,
 subcat.Name as SubcategoryName, cat.Name as CategoryName,
 description.Description
 from Production.Product product
 join Production.ProductSubcategory subcat on
 product.ProductSubcategoryID = subcat.ProductSubcategoryID
 join Production.ProductCategory cat on
 subcat.ProductCategoryID = cat.ProductCategoryID

380 | Chapter 10: Putting It All Together

 join Production.ProductModel model on
 product.ProductModelID = model.ProductModelID
 join Production.ProductModelProductDescriptionCulture culture
 on model.ProductModelID = culture.ProductModelID
 join Production.ProductDescription description on
 culture.ProductDescriptionID =
 description.ProductDescriptionID ">
 </asp:SqlDataSource>
 <asp:GridView ID="gvCart" runat="server"
 DataSourceID="sqlCart"
 AllowPaging="True" AllowSorting="True" Width="100%"
 AutoGenerateColumns="False"
 HeaderStyle-CssClass="TableColumnHeading"
 RowStyle-CssClass="TableCells">
 <Columns>
 <asp:CommandField ShowSelectButton="True" SelectText="Remove"
 ControlStyle-CssClass="ButtonSelect" ItemStyle-Width="50px"
 ItemStyle-HorizontalAlign="Center"/>
 <asp:BoundField DataField="ProductID" HeaderText="ID"
 ItemStyle-Width="50px"/>
 <asp:BoundField DataField="ProductNumber" HeaderText="Product Number"
 ItemStyle-Width="90px" />
 <asp:BoundField DataField="Color" HeaderText="Color"
 ItemStyle-Width="60px" />
 <asp:BoundField DataField="CategoryName" HeaderText="Cat"
 ItemStyle-Width="75px" />
 <asp:BoundField DataField="SubcategoryName" HeaderText="SubCat"
 ItemStyle-Width="75px" />
 <asp:BoundField DataField="Description" HeaderText="Description" />
 </Columns>
 </asp:GridView>

 <asp:Button ID="btnPurchase" runat="server" Text="Purchase Items in the Cart"
 CssClass="ButtonText"/>
</asp:Content>

Example 10-13. Cart.aspx.vb

Partial Class Cart
 Inherits System.Web.UI.Page

 Protected Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 If User.Identity.IsAuthenticated = False Then
 Response.Redirect("login.aspx")
 End If

 Me.Master.PageSubTitle.Text = "Cart"
 End Sub

Protected Sub sqlCart_Selecting(ByVal sender As Object, _
 ByVal e As System.Web.UI.WebControls.SqlDataSourceSelectingEventArgs) _
 Handles sqlCart.Selecting

Example 10-12. Cart.aspx (continued)

Source Code Listings | 381

 Trace.Warn("sqlCart_Selecting")

 Dim strCart As String = String.Empty
 If Session("Cart") IsNot Nothing Then
 strCart = Session("Cart").ToString
 e.Command.CommandText &= " where product.ProductID in (" + _
 strCart + _
 ") and culture.CultureID = 'en' "
 Else
 e.Cancel = True
 End If
End Sub

Protected Sub btnPurchase_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) _
 Handles btnPurchase.Click
 Response.Redirect("Purchase.aspx")
End Sub

Protected Sub gvCart_SelectedIndexChanged(ByVal sender As Object, _
 ByVal e As System.EventArgs) _
 Handles gvCart.SelectedIndexChanged
 Dim strProductID As String = gvCart.SelectedRow.Cells(1).Text
 If Session("Cart") IsNot Nothing Then
 ' remove the selected ProductID from the Session string
 ' Retrieve the session string.
 Dim strCart As String = Session("Cart").ToString()
 Dim arIDs As String() = strCart.Split(New [Char]() {","c})

 ' iterate through the ID's comprising the string array
 ' rebuild the cart string, leaving out the matching ID
 strCart = String.Empty
 For Each str As String In arIDs
 If str <> strProductID Then
 strCart += str + ","
 End If
 Next

 ' remove the trailing comma
 If strCart.Length > 1 Then
 strCart = strCart.Substring(0, strCart.Length - 1)
 End If

 ' put it back into Session
 Session("Cart") = strCart

 ' rebind the GridView, which will force the SqlDataSource to requery
 gvCart.DataBind()
 End If ' close for test for Session
End Sub

End Class

Example 10-13. Cart.aspx.vb (continued)

382 | Chapter 10: Putting It All Together

Confirm Page

Example 10-14. Confirm.aspx

<%@ Page Language="VB" MasterPageFile="~/MasterPage.master" AutoEventWireup="false"
 CodeFile="Confirm.aspx.vb" Inherits="Confirm" title="Confirm" %>
<%@ MasterType TypeName="MasterPage" %>
<asp:Content ID="Content1" ContentPlaceHolderID="ContentPlaceHolder1"
 Runat="Server">
 <table>
 <tr>
 <td valign="top" class="ListHeading">Cart:</td>
 <td valign="top">
 <asp:SqlDataSource ID="sqlCartConfirm" runat="server"
 ConnectionString=
 "<%$ ConnectionStrings:AdventureWorksConnectionString %>"
 SelectCommand= "select ProductID, Name, ProductNumber, Color,
 ListPrice
 from Production.Product " >
 </asp:SqlDataSource>
 <asp:GridView ID="gvCart" runat="server"
 DataSourceID="sqlCartConfirm"
 AllowPaging="True" AllowSorting="True"
 HeaderStyle-CssClass="TableColumnHeading"
 RowStyle-CssClass="TableCells"
 AutoGenerateColumns="false">
 <Columns>
 <asp:BoundField DataField="ProductID" HeaderText="ID" />
 <asp:BoundField DataField="Name" HeaderText="Name" />
 <asp:BoundField DataField="ProductNumber"
 HeaderText="Product #" />
 <asp:BoundField DataField="Color" HeaderText="Color" />
 <asp:BoundField DataField="ListPrice" HeaderText="Cost"
 DataFormatString="{0:F2}" HtmlEncode="false"/>
 </Columns>
 </asp:GridView>
 </td>
 </tr>
 <tr>
 <td colspan="2"> </td>
 </tr>
 <tr>
 <td valign="top" class="ListHeading">Buyer Info:</td>
 <td valign="top">
 <asp:ListBox ID="lbBuyerInfo" runat="server" Rows="12"
 Width="250" />
 </td>
 </tr>
 </table>
</asp:Content>

Source Code Listings | 383

Example 10-15. Confirm.aspx.vb

Imports System.Collections.Generic

Partial Class Confirm
 Inherits System.Web.UI.Page

 Protected Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 If User.Identity.IsAuthenticated = False Then
 Response.Redirect("login.aspx")
 End If

 Me.Master.PageSubTitle.Text = "Confirmation"

 If Not IsPostBack Then
 lbBuyerInfo.Items.Clear()
 If Session("BuyerInfo") IsNot Nothing Then
 Dim dictBuyerInfo As Dictionary(Of String, String) = Nothing
 dictBuyerInfo = CType(Session("BuyerInfo"), _
 Dictionary(Of String, String))
 For Each key As String In dictBuyerInfo.Keys
 lbBuyerInfo.Items.Add(key + ": " + dictBuyerInfo(key))
 Next
 Else
 lbBuyerInfo.Items.Add("There is no buyer info.")
 End If
 End If

 End Sub

Protected Sub sqlCartConfirm_Selecting(ByVal sender As Object, _
 ByVal e As System.Web.UI.WebControls.SqlDataSourceSelectingEventArgs) _
 Handles sqlCartConfirm.Selecting

 Trace.Warn("sqlCartConfirm_Selecting") ' aid in debugging

 If Session("Cart") IsNot Nothing Then
 Dim strCart = Session("Cart").ToString
 e.Command.CommandText &= "where ProductID in (" + _
 strCart + ")"
 Else
 e.Cancel = True
 End If

End Sub

End Class

384 | Chapter 10: Putting It All Together

Home Page

Example 10-16. Home.aspx

<%@ Page Language="VB" MasterPageFile="~/MasterPage.master" AutoEventWireup="false"
 CodeFile="Home.aspx.vb" Inherits="Home" title="Home Page" Trace="false"%>
<%@ MasterType TypeName="MasterPage" %>
<asp:Content ID="Content1" ContentPlaceHolderID="ContentPlaceHolder1"
 Runat="Server">
 <h2>This Is Your Home Page</h2>
 <div class="TextNormal">
 You can put some stuff about your company here. Perhaps some links.
 Of course, in a real world application, the navigation would probably
 much more complex. Also, the buttons would actually do something,
 rather than just wave their arms and say
 Look at me!
 </div>
 <asp:Panel ID="pnlEmployee" runat="server" Visible="false" >
 <h3>Employee Information</h3>
 <div class="TextNormal">
 This panel should only be visible to users are a members of the
 Employee role. Turning on the visibility of this Panel
 occurs in the Page_Load event handler.
 </div>
 </asp:Panel>
 <asp:Panel ID="pnlManager" runat="server" Visible="false" >
 <h3>Manager Information</h3>
 <div class="TextNormal">
 This panel should only be visible to users are a members of the
 Manager role. Turning on the visibility of this Panel
 occurs in the Page_Load event handler.
 </div>
 </asp:Panel>
</asp:Content>

Example 10-17. Home.aspx.vb

Partial Class Home
 Inherits System.Web.UI.Page

 Protected Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 Me.Master.PageSubTitle.Text = "Home"

 ' control the visibility of sections restricted to specific roles
 pnlManager.Visible = User.IsInRole("Manager")
 pnlEmployee.Visible = User.IsInRole("Employee")
 End Sub
End Class

Source Code Listings | 385

Login Page

Master Page

Example 10-18. Login.aspx

<%@ Page Language="VB" MasterPageFile="~/MasterPage.master" AutoEventWireup="false"
 CodeFile="Login.aspx.vb" Inherits="Login" title="Login" Trace="false" %>
<%@ MasterType TypeName="MasterPage" %>
<asp:Content ID="Content1" ContentPlaceHolderID="ContentPlaceHolder1"
 Runat="Server">
 <asp:Login ID="Login1" runat="server" DestinationPageUrl="~/home.aspx"
 BackColor="#F7F6F3" BorderColor="#E6E2D8" BorderPadding="4"
 BorderStyle="Solid" BorderWidth="1px" Font-Names="Verdana"
 Font-Size="0.8em" ForeColor="#333333">
 <TitleTextStyle BackColor="#5D7B9D" Font-Bold="True"
 Font-Size="0.9em" ForeColor="White" />
 <InstructionTextStyle Font-Italic="True" ForeColor="Black" />
 <TextBoxStyle Font-Size="0.8em" />
 <LoginButtonStyle BackColor="#FFFBFF" BorderColor="#CCCCCC"
 BorderStyle="Solid" BorderWidth="1px"
 Font-Names="Verdana" Font-Size="0.8em" ForeColor="#284775" />
 </asp:Login>
</asp:Content>

Example 10-19. Login.aspx.vb

Partial Class Login
 Inherits System.Web.UI.Page

 Protected Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 Me.Master.PageSubTitle.Text = "Login"
 End Sub
End Class

Example 10-20. MasterPage.master

<%@ Master Language="VB" CodeFile="MasterPage.master.vb"
 Inherits="MasterPage" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" >
<head id="head1" runat="server">
 <title>Adventure Works</title>
 <style type="text/css">@import url(StyleSheet.css); </style>
</head>

386 | Chapter 10: Putting It All Together

<body>
 <form id="form1" runat="server">
 <asp:ScriptManager ID="ScriptManager1" runat="server" />
 <div>
 <table border="0">
 <tr>
 <td colspan="4">
 <table>
 <tr>
 <td width="10px"> </td>
 <td>
 <asp:ImageButton ID="ibLogo" runat="server"
 ImageUrl=
 "~/images/AdventureWorksLogo-250x70.gif"
 AlternateText="AdventureWorks logo"
 PostBackUrl="~/Home.aspx" />
 </td>
 <td width="10px"> </td>
 <td width="500px" align="right">
 Adventure Works

 <asp:Label ID="lblPageSubTitle" runat="server"
 CssClass="PageSubTitle" Text="Page SubTitle"/>

 <asp:Label id="lblTime" runat="server"
 CssClass="TextXSmall"/>
 </td>
 <td width="10px"> </td>
 </tr>
 <tr>
 <td colspan="5">
 <hr />
 </td>
 </tr>
 </table>
 </td>
 </tr>
 <tr>
 <td width="5px"> </td>
 <td width="150px" valign="top">
 <asp:LoginStatus ID="LoginStatus1" runat="server"
 CssClass="Hyperlink" />

 <asp:LoginView ID="LoginView1" runat="server" >
 <LoggedInTemplate>
 Welcome
 <asp:LoginName ID="LoginName1" runat="server"
 CssClass="WarningRoutine"/>
 </LoggedInTemplate>

Example 10-20. MasterPage.master (continued)

Source Code Listings | 387

 <AnonymousTemplate>

 You are not logged in. Please click the login
 link to log in to this website.

 </AnonymousTemplate>
 </asp:LoginView>
 <hr />
 <asp:SiteMapDataSource ID="SiteMapDataSource1" runat="server"
 ShowStartingNode="false" />
 <asp:Menu ID="Menu1" runat="server"
 DataSourceID="SiteMapDataSource1"
 CssClass="MenuText" />
 </td>
 <td width="5px"> </td>
 <td width="700px" valign="top" bgcolor="yellow">
 <asp:contentplaceholder id="ContentPlaceHolder1"
 runat="server" >
 </asp:contentplaceholder>
 </td>
 </tr>
 </table>
 </div>
 </form>
</body>
</html>

Example 10-21. MasterPage.master.vb

Partial Class MasterPage
 Inherits System.Web.UI.MasterPage
Public Property PageSubTitle() As Label
 Get
 Return lblPageSubTitle
 End Get
 Set(ByVal value As Label)
 lblPageSubTitle = value
 End Set
End Property

 Protected Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 If Page.User.Identity.IsAuthenticated = False Then
 Menu1.Enabled = False
 End If

 lblTime.Text = DateTime.Now.ToString()
 End Sub
End Class

Example 10-20. MasterPage.master (continued)

388 | Chapter 10: Putting It All Together

Products Page

Example 10-22. Products.aspx

<%@ Page Language="VB" MasterPageFile="~/MasterPage.master" AutoEventWireup="false"
 CodeFile="Products.aspx.vb" Inherits="Products" title="Products" %>
<%@ MasterType TypeName="MasterPage" %>
<asp:Content ID="Content1" ContentPlaceHolderID="ContentPlaceHolder1"
 Runat="Server">
 <asp:UpdatePanel id="UpdatePanel1" runat="server">
 <ContentTemplate>

 <asp:SqlDataSource ID="sqlCategories" runat="server"
 ConnectionString=
 "<%$ ConnectionStrings:AdventureWorksConnectionString %>"
 SelectCommand="select Name, ProductCategoryID
 from Production.ProductCategory
 order by Name" >
 </asp:SqlDataSource>
 <asp:RadioButtonList ID="rblCategories" runat="server"
 DataSourceID="sqlCategories" RepeatDirection="Horizontal"
 DataTextField="Name" DataValueField="ProductCategoryID"
 CssClass="LabelSmall" AutoPostBack="True">
 </asp:RadioButtonList>
 <asp:SqlDataSource id="sqlProducts" runat="server"
 ConnectionString=
 "<%$ ConnectionStrings:AdventureWorksConnectionString %>">
 <SelectParameters>
 <asp:ControlParameter ControlID="rblCategories"
 Name="ProductCategoryID"
 PropertyName="SelectedValue" />
 </SelectParameters>
 </asp:SqlDataSource>
 <asp:GridView id="gvProducts" runat="server"
 DataSourceID="sqlProducts" DataKeyNames="ProductID"
 AllowSorting="True" AllowPaging="True"
 AutoGenerateColumns="False"
 HeaderStyle-CssClass="TableColumnHeading"
 RowStyle-CssClass="TableCells">
 <Columns>
 <asp:CommandField ShowSelectButton="True" ItemStyle-Width="50px"
 ControlStyle-CssClass="ButtonSelect" />
 <asp:BoundField DataField="ProductID" HeaderText="ID"
 SortExpression="ProductID">
 <ItemStyle Width="50px" />
 </asp:BoundField>
 <asp:BoundField DataField="Name" HeaderText="Name"
 SortExpression="Name">
 <ItemStyle Width="225px" />
 </asp:BoundField>
 <asp:BoundField DataField="ProductNumber"
 HeaderText="Product Number"
 SortExpression="ProductNumber">
 <ItemStyle Width="90px" />

Source Code Listings | 389

 </asp:BoundField>
 <asp:BoundField DataField="ListPrice" HeaderText="Cost"
 SortExpression="ListPrice"
 ItemStyle-CssClass="TableNumberDecimal"
 HeaderStyle-CssClass="TableColumnHeadingRight">
 <ItemStyle Width="60px" />
 </asp:BoundField>
 </Columns>
 </asp:GridView>
 <asp:Panel id="pnlProduct" runat="server" Visible="false">
 <table width="100%">
 <tr>
 <td valign="top">
 <asp:Button id="btnAddToCart" runat="server"
 Text="Add To Cart" OnClick="btnAddToCart_Click"
 CssClass="ButtonText" />
 <div class="ListHeading">Items In Cart</div>
 <asp:Label ID="lblCart" runat="server" CssClass="TextSmall"
 Width="90"/>
 </td>
 <td valign="top">
 <asp:SqlDataSource id="sqlDetailsView" runat="server"
 ConnectionString=
 "<%$ ConnectionStrings:AdventureWorksConnectionString %>">
 <SelectParameters>
 <asp:ControlParameter ControlID="gvProducts"
 Name="ProductID"
 PropertyName=
 "SelectedDataKey.Values['ProductID']" />
 </SelectParameters>
 </asp:SqlDataSource>
 <asp:DetailsView id="DetailsView1" runat="server"
 DataSourceID="sqlDetailsView" DataKeyNames="ProductID"
 AutoGenerateRows="false"
 CssClass="TableCells" BorderWidth="0"
 FieldHeaderStyle-CssClass="TableRowHeading"
 CellSpacing="2" CellPadding="2"
 Width="500px" Height="50px">
 <Fields>
 <asp:BoundField DataField="ProductID"
 HeaderText="Product ID:"
 SortExpression="ProductID" />
 <asp:BoundField DataField="Name" HeaderText="Name:"
 SortExpression="Name" />
 <asp:BoundField DataField="ProductNumber"
 HeaderText="Product #:"
 SortExpression="ProductNumber" />
 <asp:BoundField DataField="ListPrice"
 HeaderText="Cost:"
 SortExpression="ListPrice"
 DataFormatString="{0:C}"
 HtmlEncode="false"/>

Example 10-22. Products.aspx (continued)

390 | Chapter 10: Putting It All Together

 <asp:BoundField DataField="Color" HeaderText="Color:"
 SortExpression="Color" />
 <asp:BoundField DataField="CategoryName"
 HeaderText="Category:"
 SortExpression="CategoryName" />
 <asp:BoundField DataField="SubcategoryName"
 HeaderText="SubCategory:"
 SortExpression="SubcategoryName" />
 <asp:BoundField DataField="Description"
 HeaderText="Description:"
 SortExpression="Description" />
 </Fields>
 </asp:DetailsView>
 </td>
 </tr>
 </table>
 </asp:Panel>

 </ContentTemplate>
 </asp:UpdatePanel>
</asp:Content>

Example 10-23. Products.aspx.vb

Partial Class Products
 Inherits System.Web.UI.Page

Protected Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 If User.Identity.IsAuthenticated = False Then
 Response.Redirect("login.aspx")
 End If
 Me.Master.PageSubTitle.Text = "Products"

 Dim strCommand As String = String.Empty
 strCommand = "select ProductID, Name, ProductNumber, ListPrice from " + _
 "Production.Product "
 strCommand += "where ProductSubcategoryID in "
 strCommand += "(select ProductSubcategoryID from " + _
 "Production.ProductSubcategory "
 strCommand += "where ProductCategoryID = "
 strCommand += "@ProductCategoryID)"
 sqlProducts.SelectCommand = strCommand

 strCommand = String.Empty
 strCommand += "select product.*, subcat.ProductSubcategoryID, " + _
 "subcat.Name as SubcategoryName, "
 strCommand += "cat.ProductCategoryID, cat.Name as CategoryName, "
 strCommand += "model.Name as ModelName, model.CatalogDescription, " + _
 "model.Instructions, "
 strCommand += "description.Description "
 strCommand += "from Production.Product product "

Example 10-22. Products.aspx (continued)

Source Code Listings | 391

 strCommand += "join Production.ProductSubcategory subcat on " + _
 "product.ProductSubcategoryID = subcat.ProductSubcategoryID "
 strCommand += _
 "join Production.ProductCategory cat on subcat.ProductCategoryID = " + _
 "cat.ProductCategoryID "
 strCommand += _
 "join Production.ProductModel model on product.ProductModelID = " + _
 "model.ProductModelID "
 strCommand += _
 "join Production.ProductModelProductDescriptionCulture culture on " + _
 "model.ProductModelID = culture.ProductModelID "
 strCommand += "join Production.ProductDescription description on " + _
 "culture.ProductDescriptionID = " + _
 "description.ProductDescriptionID "
 strCommand += "where product.ProductID = @ProductID and " + _
 "Culture.CultureID = 'en' "
 sqlDetailsView.SelectCommand = strCommand

End Sub
Protected Sub btnAddToCart_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs)
 ' the contents of the cart will be saved in a Session object as
 ' a string of comma-delimited values of ProductID's
 Dim strCart As String = String.Empty
 Dim strProductId As String = gvProducts.SelectedDataKey.Value.ToString()

 If Session("Cart") Is Nothing Then
 strCart = strProductId
 Else
 strCart = Session("Cart").ToString() + ", " + strProductId
 End If

 Session("Cart") = strCart
 lblCart.Text = strCart
End Sub

Protected Sub gvProducts_SelectedIndexChanged(ByVal sender As Object, _
 ByVal e As System.EventArgs) _
 Handles gvProducts.SelectedIndexChanged
 pnlProduct.Visible = True
End Sub

Protected Sub gvProducts_RowDataBound(ByVal sender As Object, _
 ByVal e As System.Web.UI.WebControls.GridViewRowEventArgs) _
 Handles gvProducts.RowDataBound
 Dim str As String = String.Empty
 If e.Row.RowType = DataControlRowType.DataRow Then
 Dim cell As TableCell = e.Row.Cells(4) ' ListPrice cell
 Dim nCost As Decimal
 Try
 nCost = CType(cell.Text, Decimal)
 str = nCost.ToString("##,##0.00", Nothing)

Example 10-23. Products.aspx.vb (continued)

392 | Chapter 10: Putting It All Together

Purchase Page

 Catch ex As ApplicationException
 str = "n.a."
 Finally
 cell.Text = str
 End Try
 End If
End Sub

Protected Sub rblCategories_SelectedIndexChanged(ByVal sender As Object, _
 ByVal e As System.EventArgs) _
 Handles rblCategories.SelectedIndexChanged
 pnlProduct.Visible = False
End Sub

End Class

Example 10-24. Purchase.aspx

<%@ Page Language="VB" MasterPageFile="~/MasterPage.master" AutoEventWireup="false"
 CodeFile="Purchase.aspx.vb" Inherits="Purchase" title="Make Your Purchase" %>
<%@ MasterType TypeName="MasterPage" %>
<asp:Content ID="Content1" ContentPlaceHolderID="ContentPlaceHolder1"
 Runat="Server">
 <table border="0" class="TableRowHeading">
 <tr>
 <td colspan="4">
 Billing Information
 </td>
 </tr>
 <tr>
 <td>Name</td>
 <td colspan="4">
 <asp:TextBox ID="txtName" runat="server" Width="250" />
 <asp:RequiredFieldValidator ID="rfName" runat="server"
 ControlToValidate="txtName"
 Display="Dynamic" ErrorMessage="Name is a required field."
 CssClass="ValidationError">*</asp:RequiredFieldValidator></td>
 </tr>
 <tr>
 <td>Address</td>
 <td colspan="3">
 <asp:TextBox ID="txtAddress" runat="server" Width="250" />
 <asp:RequiredFieldValidator ID="rfAddress" runat="server"
 ControlToValidate="txtAddress"
 Display="Dynamic" ErrorMessage="Address is a required field."
 CssClass="ValidationError">*</asp:RequiredFieldValidator></td>
 </tr>
 <tr>
 <td>City</td>

Example 10-23. Products.aspx.vb (continued)

Source Code Listings | 393

 <td style="width: 181px">
 <asp:TextBox ID="txtCity" runat="server" />
 <asp:RequiredFieldValidator ID="rfCity" runat="server"
 ControlToValidate="txtCity"
 Display="Dynamic" ErrorMessage="City is a required field."
 CssClass="ValidationError">*</asp:RequiredFieldValidator>
 </td>
 <td>
 <asp:SqlDataSource ID="sqlStates" runat="server"
 ConnectionString=
 "<%$ ConnectionStrings:AdventureWorksConnectionString %>"
 SelectCommand="SELECT StateProvinceCode, [Name]
 FROM Person.StateProvince
 WHERE CountryRegionCode = 'US' order by [Name]">
 </asp:SqlDataSource>
 <asp:DropDownList ID="ddlStates" runat="server"
 DataSourceID="sqlStates"
 DataTextField="Name" DataValueField="StateProvinceCode" />
 </td>
 </tr>
 <tr>
 <td>Zip</td>
 <td style="width: 181px">
 <asp:TextBox ID="txtZip" runat="server" />
 <asp:RequiredFieldValidator ID="rfZip" runat="server"
 ControlToValidate="txtZip"
 Display="Dynamic" ErrorMessage="Zip is a required field."
 CssClass="ValidationError">*</asp:RequiredFieldValidator>
 <asp:RegularExpressionValidator ID="reZip" runat="server"
 ErrorMessage="Invalid Zip format"
 ControlToValidate="txtZip"
 Display="Dynamic"
 ValidationExpression="^\d{5}$|^\d{5}-\d{4}$"
 CssClass="ValidationError">*</asp:RegularExpressionValidator>
 </td>
 </tr>
 <tr>
 <td>Card</td>
 <td colspan="3" >
 <asp:RadioButtonList ID="rblCardType" runat="server"
 RepeatDirection="Horizontal">
 <asp:ListItem Value="am" Text="American Express" />
 <asp:ListItem Value="d" Text="Discover" />
 <asp:ListItem Value="mc" Text="MasterCard" />
 <asp:ListItem Value="v" Text="Visa" />
 </asp:RadioButtonList>
 <asp:RequiredFieldValidator ID="rfCreditCard" runat="server"
 ErrorMessage="Credit Card type is missing."
 ControlToValidate="rblCardType" Display="Dynamic"
 InitialValue=""
 CssClass="ValidationError">*</asp:RequiredFieldValidator>
 </td>
 </tr>

Example 10-24. Purchase.aspx (continued)

394 | Chapter 10: Putting It All Together

 <tr>
 <td>CC #</td>
 <td style="width: 181px">
 <asp:TextBox ID="txtCCNumber" runat="server" />
 <asp:RequiredFieldValidator ID="rfCCNumber" runat="server"
 ControlToValidate="txtCCNumber"
 Display="Dynamic"
 ErrorMessage="Credit Card Number is a required field."
 CssClass="ValidationError">*</asp:RequiredFieldValidator>
 <asp:RegularExpressionValidator ID="reCCNumber" runat="server"
 ErrorMessage="Invalid Credit Card Number"
 ControlToValidate="txtCCNumber"
 Display="Dynamic"
 ValidationExpression=
 "^(\d{4}-){3}\d{4}$|^(\d{4}){3}\d{4}$|^\d{16}$"
 CssClass="ValidationError">*</asp:RegularExpressionValidator>
 </td>
 <td align="right">Security Code</td>
 <td>
 <asp:TextBox ID="txtSecurityCode" runat="server" />
 <asp:RequiredFieldValidator ID="rfSecurityCode" runat="server"
 ControlToValidate="txtSecurityCode"
 Display="Dynamic"
 ErrorMessage="Security Code is a required field."
 CssClass="ValidationError">*</asp:RequiredFieldValidator>
 <asp:RegularExpressionValidator ID="reSecurityCode"
 runat="server"
 ErrorMessage="Invalid Security Code"
 ControlToValidate="txtSecurityCode"
 Display="Dynamic"
 ValidationExpression="^\d{3}$"
 CssClass="ValidationError">*</asp:RegularExpressionValidator>
 </td>
 </tr>
 <tr>
 <td colspan="2">
 Shipping Information
 </td>
 <td colspan="2">
 <asp:RadioButtonList ID="rblShippingAddress" runat="server"
 AutoPostBack="true" RepeatDirection="Horizontal">
 <asp:ListItem Value="billing" Text="Ship to Billing Address"
 Selected="True" />
 <asp:ListItem Value="different"
 Text="Ship to Different Address" />
 </asp:RadioButtonList>
 </td>
 </tr>
 <tr>
 <td colspan="4">
 <asp:Panel ID="pnlShippingAddress" runat="server" Visible="false" >
 <table border="0">

Example 10-24. Purchase.aspx (continued)

Source Code Listings | 395

 <tr>
 <td>Address</td>
 <td colspan="3">
 <asp:TextBox ID="txtShippingAddress" runat="server"
 Width="250" />
 </td>
 </tr>
 <tr>
 <td>City</td>
 <td>
 <asp:TextBox ID="txtShippingCity" runat="server" />
 </td>
 <td>
 <asp:DropDownList ID="ddlShippingStates"
 runat="server"
 DataSourceID="sqlStates"
 DataTextField="Name"
 DataValueField="StateProvinceCode" />
 </td>
 <td>Zip</td>
 <td>
 <asp:TextBox ID="txtShippingZip" runat="server" />
 <asp:RegularExpressionValidator ID="reShippingZip"
 runat="server"
 ErrorMessage="Invalid Zip format"
 ControlToValidate="txtShippingZip"
 Display="Dynamic"
 ValidationExpression="^\d{5}$|^\d{5}-\d{4}$"
 CssClass="ValidationError">*
 </asp:RegularExpressionValidator>
 </td>
 </tr>
 </table>
 </asp:Panel>
 </td>
 </tr>
 <tr>
 <td colspan="4">
 <asp:ValidationSummary ID="ValidationSummary1" runat="server"
 CssClass="ValidationError" />
 </td>
 </tr>
 <tr>
 <td colspan="4">
 <asp:Button ID="btnBuy" runat="server" Text="Buy Now"
 CssClass="ButtonText" />
 </td>
 </tr>
 </table>

</asp:Content>

Example 10-24. Purchase.aspx (continued)

396 | Chapter 10: Putting It All Together

Example 10-25. Purchase.aspx.vb

Partial Class Products
 Inherits System.Web.UI.Page

Protected Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 If User.Identity.IsAuthenticated = False Then
 Response.Redirect("login.aspx")
 End If
 Me.Master.PageSubTitle.Text = "Products"

 Dim strCommand As String = String.Empty
 strCommand = "select ProductID, Name, ProductNumber, ListPrice from " + _
 "Production.Product "
 strCommand += "where ProductSubcategoryID in "
 strCommand += "(select ProductSubcategoryID from " + _
 "Production.ProductSubcategory "
 strCommand += "where ProductCategoryID = "
 strCommand += "@ProductCategoryID)"
 sqlProducts.SelectCommand = strCommand

 strCommand = String.Empty
 strCommand += "select product.*, subcat.ProductSubcategoryID, " + _
 "subcat.Name as SubcategoryName, "
 strCommand += "cat.ProductCategoryID, cat.Name as CategoryName, "
 strCommand += "model.Name as ModelName, model.CatalogDescription, " + _
 "model.Instructions, "
 strCommand += "description.Description "
 strCommand += "from Production.Product product "
 strCommand += "join Production.ProductSubcategory subcat on " + _
 "product.ProductSubcategoryID = subcat.ProductSubcategoryID "
 strCommand += _
 "join Production.ProductCategory cat on subcat.ProductCategoryID = " + _
 "cat.ProductCategoryID "
 strCommand += _
 "join Production.ProductModel model on product.ProductModelID = " + _
 "model.ProductModelID "
 strCommand += _
 "join Production.ProductModelProductDescriptionCulture culture on " + _
 "model.ProductModelID = culture.ProductModelID "
 strCommand += "join Production.ProductDescription description on " + _
 "culture.ProductDescriptionID = " + _
 "description.ProductDescriptionID "
 strCommand += "where product.ProductID = @ProductID and " + _
 "Culture.CultureID = 'en' "
 sqlDetailsView.SelectCommand = strCommand
End Sub

Protected Sub btnAddToCart_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs)
 ' the contents of the cart will be saved in a Session object as
 ' a string of comma-delimited values of ProductID's
 Dim strCart As String = String.Empty
 Dim strProductId As String = gvProducts.SelectedDataKey.Value.ToString()

Source Code Listings | 397

Web.config

 If Session("Cart") Is Nothing Then
 strCart = strProductId
 Else
 strCart = Session("Cart").ToString() + "," + strProductId
 End If

 Session("Cart") = strCart
 lblCart.Text = strCart
End Sub

Protected Sub gvProducts_SelectedIndexChanged(ByVal sender As Object, _
 ByVal e As System.EventArgs) _
 Handles gvProducts.SelectedIndexChanged
 pnlProduct.Visible = True
End Sub

Protected Sub gvProducts_RowDataBound(ByVal sender As Object, _
 ByVal e As System.Web.UI.WebControls.GridViewRowEventArgs) _
 Handles gvProducts.RowDataBound
 Dim str As String = String.Empty
 If e.Row.RowType = DataControlRowType.DataRow Then
 Dim cell As TableCell = e.Row.Cells(4) ' ListPrice cell
 Dim nCost As Decimal
 Try
 nCost = CType(cell.Text, Decimal)
 str = nCost.ToString("##,##0.00", Nothing)
 Catch ex As ApplicationException
 str = "n.a."
 Finally
 cell.Text = str
 End Try
 End If
End Sub

Protected Sub rblCategories_SelectedIndexChanged(ByVal sender As Object, _
 ByVal e As System.EventArgs) _
 Handles rblCategories.SelectedIndexChanged
 pnlProduct.Visible = False
End Sub

End Class

Example 10-26. web.config

<?xml version="1.0"?>
<configuration xmlns="http://schemas.microsoft.com/.NetConfiguration/v2.0">
 <configSections>
 <sectionGroup name="system.web.extensions"
 type="System.Web.Configuration.SystemWebExtensionsSectionGroup,
 System.Web.Extensions, Version=1.0.61025.0, Culture=neutral,

Example 10-25. Purchase.aspx.vb (continued)

398 | Chapter 10: Putting It All Together

 PublicKeyToken=31bf3856ad364e35">
 <sectionGroup name="scripting"
 type="System.Web.Configuration.ScriptingSectionGroup,
 System.Web.Extensions, Version=1.0.61025.0, Culture=neutral,
 PublicKeyToken=31bf3856ad364e35">
 <section name="scriptResourceHandler"
 type="System.Web.Configuration.
 ScriptingScriptResourceHandlerSection, System.Web.Extensions,
 Version=1.0.61025.0, Culture=neutral,
 PublicKeyToken=31bf3856ad364e35" requirePermission="false"
 allowDefinition="MachineToApplication"/>
 <sectionGroup name="webServices"
 type="System.Web.Configuration.ScriptingWebServicesSectionGroup,
 System.Web.Extensions, Version=1.0.61025.0, Culture=neutral,
 PublicKeyToken=31bf3856ad364e35">
 <section name="jsonSerialization"
 type="System.Web.Configuration.
 ScriptingJsonSerializationSection, System.Web.Extensions,
 Version=1.0.61025.0, Culture=neutral,
 PublicKeyToken=31bf3856ad364e35" requirePermission="false"
 allowDefinition="Everywhere"/>

 <section name="profileService"
 type="System.Web.Configuration.ScriptingProfileServiceSection,
 System.Web.Extensions, Version=1.0.61025.0, Culture=neutral,
 PublicKeyToken=31bf3856ad364e35" requirePermission="false"
 allowDefinition="MachineToApplication"/>
 <section name="authenticationService"
 type="System.Web.Configuration.
 ScriptingAuthenticationServiceSection, System.Web.Extensions,
 Version=1.0.61025.0, Culture=neutral,
 PublicKeyToken=31bf3856ad364e35" requirePermission="false"
 allowDefinition="MachineToApplication"/>
 </sectionGroup>
 </sectionGroup>
 </sectionGroup>
 </configSections>
 <connectionStrings>
 <add name="AdventureWorksConnectionString" connectionString="Data
 Source=DELL380;Initial Catalog=AdventureWorks;Integrated Security=True"
 providerName="System.Data.SqlClient" />
 </connectionStrings>
 <system.web>
 <roleManager enabled="true" />
 <authentication mode="Forms" />
 <pages>
 <controls>
 <add tagPrefix="asp" namespace="System.Web.UI"
 assembly="System.Web.Extensions, Version=1.0.61025.0, Culture=neutral,
 PublicKeyToken=31bf3856ad364e35"/>
 </controls>
 </pages>

Example 10-26. web.config (continued)

Source Code Listings | 399

 <!--
 Set compilation debug="true" to insert debugging
 symbols into the compiled page. Because this
 affects performance, set this value to true only
 during development.
 -->
 <compilation debug="true">
 <assemblies>
 <add assembly="System.Web.Extensions, Version=1.0.61025.0,
 Culture=neutral, PublicKeyToken=31bf3856ad364e35"/>
 </assemblies>
 </compilation>
 <httpHandlers>
 <remove verb="*" path="*.asmx"/>
 <add verb="*" path="*.asmx" validate="false"
 type="System.Web.Script.Services.ScriptHandlerFactory,
 System.Web.Extensions, Version=1.0.61025.0, Culture=neutral,
 PublicKeyToken=31bf3856ad364e35"/>
 <add verb="*" path="*_AppService.axd" validate="false"
 type="System.Web.Script.Services.ScriptHandlerFactory,
 System.Web.Extensions, Version=1.0.61025.0, Culture=neutral,
 PublicKeyToken=31bf3856ad364e35"/>
 <add verb="GET,HEAD" path="ScriptResource.axd"
 type="System.Web.Handlers.ScriptResourceHandler, System.Web.Extensions,
 Version=1.0.61025.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35"
 validate="false"/>
 </httpHandlers>
 <httpModules>
 <add name="ScriptModule" type="System.Web.Handlers.ScriptModule,
 System.Web.Extensions, Version=1.0.61025.0, Culture=neutral,
 PublicKeyToken=31bf3856ad364e35"/>
 </httpModules>
 <customErrors mode="On" defaultRedirect="CustomErrorPage.aspx">
 <error statusCode="400" redirect="CustomErrorPage400.aspx"/>
 <error statusCode="404" redirect="CustomErrorPage404.aspx"/>
 <error statusCode="500" redirect="CustomErrorPage500.aspx"/>
 </customErrors>
 </system.web>
 <system.webServer>
 <validation validateIntegratedModeConfiguration="false"/>
 <modules>
 <add name="ScriptModule" preCondition="integratedMode"
 type="System.Web.Handlers.ScriptModule, System.Web.Extensions,
 Version=1.0.61025.0, Culture=neutral,
 PublicKeyToken=31bf3856ad364e35"/>
 </modules>
 <handlers>
 <remove name="WebServiceHandlerFactory-Integrated"/>
 <add name="ScriptHandlerFactory" verb="*" path="*.asmx"
 preCondition="integratedMode"
 type="System.Web.Script.Services.ScriptHandlerFactory,
 System.Web.Extensions, Version=1.0.61025.0, Culture=neutral,
 PublicKeyToken=31bf3856ad364e35"/>

Example 10-26. web.config (continued)

400 | Chapter 10: Putting It All Together

 <add name="ScriptHandlerFactoryAppServices" verb="*"
 path="*_AppService.axd" preCondition="integratedMode"
 type="System.Web.Script.Services.ScriptHandlerFactory,
 System.Web.Extensions, Version=1.0.61025.0, Culture=neutral,
 PublicKeyToken=31bf3856ad364e35"/>
 <add name="ScriptResource" preCondition="integratedMode"
 verb="GET,HEAD" path="ScriptResource.axd"
 type="System.Web.Handlers.ScriptResourceHandler,
 System.Web.Extensions, Version=1.0.61025.0, Culture=neutral,
 PublicKeyToken=31bf3856ad364e35"/>
 </handlers>
 </system.webServer>
</configuration>

Example 10-26. web.config (continued)

401

Appendix A APPENDIX A

Installing the Applications1

This book contains lots of practice examples, both ones that you can follow along
with, and exercises that you can do yourself. To do them, though, you’ll need the
right tools: an Integrated Development Environment (IDE), the AJAX extensions,
and a database. Fortunately, everything you need is available in free versions from
Microsoft, although you can use the fancier paid versions if you want. In this appen-
dix, we’ll walk you through getting all the software you need, and installing it. By the
end of this appendix, you’ll be ready to do all the examples in this book.

What Hardware and Software You’ll Need
To build the examples in this book, you’ll need a PC running one of the following
editions of Windows:

• Windows Vista (any edition)

• Windows XP Home, SP 2

• Windows XP Professional, SP 2

• Windows 2000 Professional, SP 4

• Windows 2000 Server, SP 4

• Windows Server 2003, SP 2

• Windows x64 (any edition with the accompanying service pack)

Microsoft recommends that your computer have (at a minimum) a Pentium III 600
MHz with 1 GHz recommended. Although Microsoft insists you can run with 192
MB of memory, 512 MB is recommended. Many serious programmers find that 1 GB
of memory is the minimum for professional work, and the authors have recently
stepped up to 4 GB (but this is what we do for a living).

Visual Web Developer, the .NET Framework, the documentation, and SQL Express
will require nearly two gigabytes of space on your hard drive. A full install of Visual
Studio 2005 will take considerably more.

402 | Appendix A: Installing the Applications

There are two software environments that will work equally well for this book:
Visual Web Developer (VWD) and Visual Studio 2005 (VS). The advantage of VWD
is that it is free. The advantage of VS is that it is a full-featured development environ-
ment (IDE) widely used for professional development of both web and desktop
applications. In addition, you will need to install the ASP.NET AJAX libraries.

Visual Web Developer (VWD)
VWD is a subset of Visual Studio and can be used only to build web sites. That said,
it is a full-featured development environment and will be all you’ll need if all you are
doing is developing web sites or web services (and you can’t beat the price).

Within the realm of creating web sites, we have found only one limita-
tion of VWD, and that is a very advanced topic: It will not let you cre-
ate your own AJAX extender controls, which are mentioned (but not
demonstrated) in Chapter 3.

You can beef up (in my family, that would be “soy up”) VWD by downloading the
Reporting Add-in, which consists of the ReportViewer control, an integrated report
designer, and report programming interface.

Installing VWD
To get started, download vwdsetup.exe from http://msdn.microsoft.com/vstudio/
express/vwd/download/ in the language of your choice. After it is downloaded to your
machine, double-click it and it will self-install.

Accept the terms of the license and select which additional features you’d like to
install along with the development environment, as shown in Figure A-1. You should
select both options—the MSDN Express Edition provides documentation that will
help you when you get stuck on how to use a control, for example. The SQL Server
2005 Express Edition lets you connect your web applications to databases, and you’ll
need it for several of the examples in this book, starting in Chapter 4.

If you already have SQL Server installed on your machine, there is no
need to install SQL Server 2005 Express Edition.

You will then be asked to select the destination folder for installation—accepting the
default is fine. You’ll also be asked to be sure you are connected to the Internet
before proceeding with the installation, as shown in Figure A-2.

The installation will proceed, downloading what it needs as it goes. You will be
required to restart Windows after the .NET Framework is installed, but other than
that (and a request to register the software), the installation should pretty much take
care of itself.

http://msdn.microsoft.com/vstudio/express/vwd/download/
http://msdn.microsoft.com/vstudio/express/vwd/download/

Visual Web Developer (VWD) | 403

After the installation is complete, it is always a good idea to go to the Microsoft web
site at http://msdn2.microsoft.com/en-us/downloads/default.aspx to get the latest ser-
vice packs. Also, if you are running Vista, you want to download and install the Vista
Compatibility Pack by going to Windows Update.

Once it is fully installed, fire up the program from the Start menu, and the develop-
ment environment should open, as shown in Figure A-3. You’ll see a number of win-
dows here, most of which are empty right now, but you’ll be using them a lot once
you start creating web pages. The Start Page occupies most of the middle of the
screen, with a lot of news from Microsoft that you can browse or ignore, as you see
fit. The “Recent Projects” area gives you shortcuts to create a new project or open an
existing one; once you’ve done a few projects, you’ll see them listed here for quick
reference.

The bar on the left is the Toolbox. This is where you’ll find the controls you’ll be
using in your projects—labels, text boxes, radio buttons, and so on, but that’s just
the beginning. On the upper right is the Solution Explorer, which is empty now, but
you’ll be able to use it to access any of the files in your project. Underneath that is
the Properties window, which will let you fine-tune your controls, once you have
some.

Figure A-1. The Visual Web Developer Installation Options. Be sure to select both checkboxes for
this book.

http://msdn2.microsoft.com/en-us/downloads/default.aspx

404 | Appendix A: Installing the Applications

Configuring SQL Express
During the VWD installation, SQL Express was installed if you checked the appro-
priate checkbox. To ensure that you can make a connection to your new database,
open VWD’s Database Explorer window (click View ➝ Database Explorer), right-
click Data Connections, and choose Add Connection. You will get the dialog box
shown in Figure A-4, asking you to choose your data source. Select Microsoft SQL
Server, as shown in Figure A-4, and click Continue.

The Add Connection dialog box shown in Figure A-5 will open.

Either type in a server name, use the drop-down menu, or click Refresh to get all the
available servers. Typically, however, your SQL Express installation will not appear
in the list. If that is the case, just enter .\sqlexpress (that is, “dot slash” before the
word “sqlexpress”). Make sure the radio button “Use Windows Authentication” is
chosen, and you should then be able to drop down the list of databases that come
with your installation of SQL Express. Select one of those databases to connect to.
Once you have selected a database to connect to, click the Test Connection button
to verify that the connection is good. Click OK in the Add Connection dialog box.

Figure A-2. Before you proceed with the installation, VWD will ask you to select a destination
folder; the default works fine. You’ll also need to make sure you’re connected to the Internet before
you click Install.

Visual Web Developer (VWD) | 405

Figure A-3. The VWD Initial Screen, which you’ll see every time you open VWD. There’s not much
here now, but that’ll change shortly.

Figure A-4. To begin the connection to your database, select Microsoft SQL Server as your data
source.

Start pageRecent projectsToolbox Solution Explorer

Properties window

406 | Appendix A: Installing the Applications

If you’re using SQL Express, you won’t be able to use the databases in that list until
you install or create a database (or databases) to work with. You need a sample data-
base, such as AdventureWorks, but AdventureWorks doesn’t come with SQL
Express, so you’ll have to install it yourself, which we do in the next section.

Using the AdventureWorks Sample Database
If you don’t already have the AdventureWorks database installed on your machine,
download it from the following:

http://www.microsoft.com/downloads/details.aspx?FamilyID=e719ecf7-9f46-
4312-af89-6ad8702e4e6e&DisplayLang=en

Figure A-5. VWD Add Connection dialog box. Enter the name of the SQL Server instance as the
Server name, select Windows Authentication, and select the database name to connect to.

http://www.microsoft.com/downloads/details.aspx?FamilyID=e719ecf7-9f46-4312-af89-6ad8702e4e6e&DisplayLang=en

Visual Studio 2005 | 407

There are several different versions of the database you can download, depending on
your circumstances and preferences. AdventureWorksDB.msi contains the database
with case-sensitive indexing. AdventureWorksDBCI.msi contains a case-insensitive
version. Either works, but the case-insensitive version is easier to work with. If you
are running a 64-bit machine, you should download AdventureWorksDB_x64.msi.

Download the appropriate file, and double-click the file to copy the sample database
to your machine. You next need to attach this sample database to your instance of
SQL Express or SQL Server. This is done with a line of SQL script. The exact steps
depend on whether you are running SQL Server or SQL Express.

If you are using SQL Server, open a query window in SQL Server Management
Studio.

If you are using SQL Express, open a command prompt by clicking Start ➝ Run…,
type in cmd, and press Enter. Then, from within that command window, enter the
following command to get a query prompt into the database (be careful of your
capitalization):

sqlcmd -S .\sqlexpress

In either case, enter the following SQL command—all on one line. We’ve broken it
up here to fit on the page:

exec sp_attach_db @dbname=N'AdventureWorks', @filename1=N'C:\Program
Files\Microsoft SQL Server\MSSQL.1\MSSQL\Data\AdventureWorks_Data.mdf',
@filename2=N'C:\Program Files\Microsoft SQL
Server\MSSQL.1\MSSQL\Data\AdventureWorks_log.ldf'

In a Management Studio query window, highlight the line of script and press F5 to
execute it. In a SQL Express query prompt, press Enter, then enter the command go,
and then press Enter again.

If you are using the query prompt, type exit to quit the program. The database
should now be installed and ready to use.

Visual Studio 2005
As an alternative to VWD, you can choose to purchase Visual Studio 2005, which
comes in a variety of flavors (Standard, Professional, and Team). Briefly, the Stan-
dard edition fully supports the creation of ASP.NET web sites. The Professional edi-
tion allows you to develop Windows desktop apps, and comes with Crystal Reports
and fuller support for XML. Stepping up to the Team edition brings full support for
Office development, all languages, 64-bit support, code profiling, static analysis, unit
testing, code coverage, project management, and test case management.

http://www.microsoft.com/downloads/details.aspx?FamilyID=e719ecf7-9f46-4312-af89-6ad8702e4e6e&DisplayLang=en

408 | Appendix A: Installing the Applications

Our recommendation: If money is no object or you are part of an enterprise develop-
ment team, then purchase the top-of-the-line MSDN subscription (Visual Studio
Team Suite with MSDN Premium). The approximate retail cost is $11,000 initially
and $3,500 to renew. For developers working on smaller projects, either alone or
with one or two team members, Visual Studio Professional with MSDN Premium
will probably be all you need, at around $3,000 initially and $2,500 to renew. Both
of these subscriptions include almost all the software Microsoft sells, plus four sup-
port incidents and a free subscription to MSDN Magazine. There are many other
subscription plans; check them out at http://msdn2.microsoft.com/en-us/vstudio/
aa718657.aspx.

On the other hand, if you don’t feel the need to buy a Ferrari, or even a Corvette, to
learn to drive, the free Visual Web Developer and SQL Express will be fine.

Installing Visual Studio 2005
Insert your disk, or click the EXE if you’ve downloaded the file. On the initial splash
screen, shown in Figure A-6, click “Install Visual Studio 2005.”

Follow the Wizard. Accept the terms of the License Agreement, and when prompted,
enter the product key, as shown in Figure A-7.

Figure A-6. Visual Studio 2005 installation initial splash screen. Select “Install Visual Studio 2005”
for now, but you can come back and look for documentation and patches later.

http://msdn2.microsoft.com/en-us/vstudio/aa718657.aspx
http://msdn2.microsoft.com/en-us/vstudio/aa718657.aspx

Visual Studio 2005 | 409

The next screen in the Wizard, shown in Figure A-8, allows you to select which fea-
tures to install, as well as the installation location.

The default location is in c:\Program Files. In theory, it is possible to
install to a different location—say, for example, a hard drive with
more space available. This sometimes works, but is often problematic.
You will have far fewer problems if you allow the installation to pro-
ceed in the default location.

The Default installation requires 2.7 GB of disk space. It installs the most commonly
used features, including Visual C#, Visual J#, Visual Basic, Visual Web Developer,
the .NET Framework (but without the QuickStart Samples), the Dotfuscator Com-
munity Edition, tools for redistributing applications (necessary for deploying desk-
top applications and creating installation packages), Crystal Reports, and SQL Server
Express.

The Full installation requires 3.2 GB of disk space. It includes all of the Default
installation, plus adds Visual C++ and the .NET Framework QuickStart Samples.

Figure A-7. The License Agreement for Visual Studio 2005. Enter your Product key, and click Next
to agree to the terms. You can even read the agreement, if you want.

410 | Appendix A: Installing the Applications

The Custom selection allows you to choose what to install. You would select this
option, for example, if you do not want to install all of the default languages or any
of the other features included with the Default installation.

We suggest doing the Custom installation, and then deselecting the language(s) and
features that you are quite certain you will never be using. You can always go back
and add the missing languages and features. However, it is often very useful to have
both C# and VB installed at a minimum, since many examples in articles and other
books will be presented in either C# or VB, but not both.

Click the Install button to commence the installation process. The installer will
restart your system part-way through, after the Framework is installed, and then con-
tinue the installation on its own.

After the VS installation completes, you definitely want to install the Product Docu-
mentation, which installs the MSDN Library on your machine, if you have the disk
space. Do this by clicking the Install Product Documentation link, shown back in
Figure A-6. The installation wizard will walk you through the process. Again, you
have the choice of a Full (1950 MB of disk space required), Custom, or Minimum
(868 MB disk space required) installation. We recommend doing the Full installa-
tion, as long as you have the disk space.

Figure A-8. This Visual Studio 2005 installation screen lets you customize your installation. Even
Default probably has a lot of stuff you don’t need, so select Custom and remove the languages that
aren’t C# or VB.NET.

ASP.NET AJAX | 411

ASP.NET AJAX
The next step is to download and install the AJAX libraries from Microsoft, avail-
able at no charge at http://AJAX.asp.net/downloads/.

ASP.NET AJAX is deployed in three parts, each a separate download:

ASP.NET 2.0 AJAX Extensions 1.0
Installs the framework for developing and running AJAX-enabled web applica-
tions, including the libraries that automatically get loaded to the client to per-
form the AJAX magic. This must be installed prior to installing either of the
other two parts required for AJAX.

The AJAX Extensions setup program will configure VWD or Visual Studio to
include the ASP.NET AJAX project templates, fully integrating AJAX into your
ASP.NET development environment.

ASP.NET AJAX Control Toolkit
An ever-expanding shared-source collection of samples and components, pro-
vided by both Microsoft and the ASP.NET community, that make it easy to add
client-side functionality to your ASP.NET web site. Our experience is that the
Toolkit is incredibly valuable, as demonstrated in Chapter 3. Don’t be put off by
the fact that it is open source; this is solid code and truly worthwhile.

The included SDK simplifies the creation of your own AJAX controls and
extenders and provides a wealth of examples of how to build world-class AJAX
controls.

ASP.NET AJAX Futures Community Technology Preview (CTP)
CTPs contain newly evolving features and components that extend the core
ASP.NET AJAX 1.0 platform, released by Microsoft every few months. There
may be useful features in the latest CTP, but this is prerelease software, so you
may want to be cautious about putting this on your computer. We do not use
any of the features of the CTP in this book, so it is not necessary to install it to
work through any of our examples.

Now you’re ready to install the AJAX software.

1. Download the ASP.NET 2.0 AJAX Extensions 1.0 installation file from http://go.
microsoft.com/fwlink/?LinkID=77296. This is a file called ASPAJAXExtSetup.msi.
Save it to a convenient folder on your system; then double-click the file in Win-
dows Explorer to start the installation process. Follow the Wizard.

2. Download the AJAX Control Toolkit from http://www.codeplex.com/
AtlasControlToolkit/Release/ProjectReleases.aspx and save it to a convenient
folder on your machine. This will be a zipped archive file. There are two ver-
sions: AjaxControlToolkit.zip and AjaxControlToolkit-NoSource.zip. The first
contains the source code for the components it contains, while the second con-
tains no source code. For this book, all you need is the NoSource file.

http://AJAX.asp.net

412 | Appendix A: Installing the Applications

This file is updated frequently, so you may want to check back period-
ically for bug fixes and new features. Be aware that installing a newer
version may break stuff that currently works. Usually this is worth the
trade-off.

3. Unpack the AJAX Control Toolkit archive folder into a convenient folder on
your computer.

4. Create a new web site from the ASP.NET AJAX web site template by opening
Visual Studio 2005 or Visual Web Developer (VS/VWD) and clicking File ➝

New Web Site..., and then picking “ASP.NET AJAX-Enabled Web Site” under
“Visual Studio installed templates.” (Yes, we know this is a strange way to install
software, but trust us, it is necessary.) You can use the default name for this new
web site because it is not necessary to actually save it.

5. After the web site opens in the IDE, the Toolbox should be visible on the left
side of the screen. (If it is not visible, click the View ➝ Toolbox menu item.)

6. The Toolbox comprises a number of groups. Each group’s name is in boldface,
and each group may have a number of items in it; the items are revealed when
the + preceding the group’s name is clicked. The first item in the Standard
group, for example, is Pointer. What we will do next is to add a new group (tab)
to the Toolbox with the name “AJAX Control Toolkit” and then populate that
group. (Microsoft has made this somewhat confusing to explain because they
refer to these groups as both groups and tabs.)

a. First, check whether the Toolbox already has a group named AJAX Control
Toolkit. If it does, then skip this step.

b. Right-click any item in the Toolbox and select “Add Tab.”

c. A text box will open on the Toolbox, above the General tab.

d. Type the name of the new tab into this text box: “AJAX Control Toolkit”;
then press Enter.

7. Right-click the new Toolbox tab and select “Choose Items...” from the pop-up
menu.

8. When the “Choose Toolbox Items” dialog appears, click the “Browse...” but-
ton. Navigate to the folder where you unzipped the ASP.NET AJAX Control
Toolkit package. You will find a folder named SampleWebSite, and under that
another folder named Bin. Inside that folder, select AJAXControlToolkit.dll and
click Open. Click OK to close the Choose Toolbox Items dialog.

9. Close the web site. There is no need to save anything.

10. You can now use the controls from the AJAX Control Toolkit in any of your web
sites.

413

Appendix B APPENDIX B

Copying a Web Site2

You’ll often find it necessary or convenient to make a copy of an existing web site—
that is, to make a new web site that is the same as the original except for a different
name. We do this frequently in this book when building up examples, layering func-
tionality on to a previous example. In the real world, you might want to make a copy
of a web site so you can experiment without breaking something that works. We
often copy a web site at various stages of development to have an easy snapshot to
refer to without having to go to the bother of restoring from backup.

Before looking at the different ways to copy a web site, it would be helpful to under-
stand a bit about what actually constitutes a web site. However, if all you want is the
cookbook recipe—the set of steps you need to follow to copy a web site—you can
skip the following discussion and move on to the next two sections, “Copying the
Web Site Without Using the IDE” and “Copying the Web Site with the IDE.”

Virtual Directories
Physically, what comprises a web site? Answer: a folder on the hard drive of the web
server. If the server in question, such as Microsoft IIS (Internet Information Ser-
vices), is operating outside the bounds of Visual Studio, Visual Web Developer, or
some other development tool, then the folder containing the web site must be desig-
nated as a virtual directory—that is, a directory that is mapped to a web URL by the
web server. When a user enters that URL into a browser, the request is passed to the
web server and the server looks to the contents of the virtual directory to satisfy the
request. How you designate the virtual directory depends on whether you’re operat-
ing from inside or outside the IDE.

414 | Appendix B: Copying a Web Site

Outside the IDE
You can map any physical directory on the web server to a virtual directory in IIS.
There are several ways to do so. Perhaps the easiest is to click the Start button, right-
click My Computer, and select Manage, to bring up the Computer Management win-
dow. Drill down through Services and Applications, Internet Information Services,
and Web Sites to Default Web Site, as shown in Figure B-1. Alternatively, go to Con-
trol Panel ➝ Administrative Tools ➝ Internet Information Services, which will bring
you to Figure B-1, already drilled in to Internet Information Services.

You can see in Figure B-1 that there are already two virtual directories in the Default
Web Site, called FormsBasedSecurityIIS and FormsBasedSecurityWAT. (These corre-
spond to two of the examples in this book from Chapter 9.)

Figure B-1. Computer Management window, showing the contents of the Default Web Site virtual
directory.

Virtual Directories | 415

By default, the physical directory corresponding to the Default Web Site virtual
directory is located at c:\inetpub\wwwroot. You can see this by right-clicking Default
Web Site, selecting Properties, and then clicking the Home Directory tab, as shown
in Figure B-2.

If there were a web page called Welcome.aspx in the default web site, and the domain
name MyDomain.com was registered to the IP address of the server, then the following
URL in a browser would bring up the page:

www.MyDomain.com/Welcome.aspx

Opening a browser locally on the server, you would use the following equivalent
URL:

localhost/Welcome.aspx

where localhost always refers to the Default Web Site on the local server.

By default in IIS, certain web page names will be the default for each web site. In
other words, you do not need to include them as part of the URL. If you enter a URL
without a page name, it will automatically look for one of the default names.

Figure B-2. You can change the physical directory of your default web site with the Default Web
Site Properties dialog.

Physical directory

http://www.MyDomain.com/Welcome.aspx
localhost/Welcome.aspx

416 | Appendix B: Copying a Web Site

You can see the default page names by right-clicking the virtual directory, selecting
Properties, and clicking the Documents tab, as shown in Figure B-3, for one of the
virtual directories on your test server.

So, to access a web site in this virtual directory, a user on the Internet would enter
the following URL from a browser, assuming that Default.aspx existed:

www.MyDomain.com/FormsBasedSecurityIIS

The equivalent URL from the local machine would be as follows:

localhost/FormsBasedSecurityIIS

Figure B-3. Default documents for a virtual directory.

http://www.MyDomain.com/
localhost/

Virtual Directories | 417

Inside the IDE
One of the big advantages to using Visual Studio or Visual Web Developer is that
you do not need to use IIS to serve your pages, and you do not need to create a vir-
tual directory. Instead, the IDE provides its own web server and temporarily creates
any necessary virtual directories.

You create a web site in the IDE either by clicking Create Web Site on the Start Page,
or by clicking the File ➝ New Web Site menu item. In either case, you get the New
Web Site dialog box shown in Figure B-4.

The highlighted portion of the path in Figure B-4 has a dual meaning. Physically, it is
the folder that contains the web site. (If you want to make this web site accessible via
IIS, this is the folder that you would make into a virtual directory.) It also is the name
of the web site for the IDE.

In other words, when you click Open Web Site on the Start page or the File ➝ Open
Web Site menu item, you navigate to this folder to open the web site. The folder
contains all the files comprising the web site.

Figure B-4. New Web Site dialog box with web site path entered and the web site name indicated.

Web site name

418 | Appendix B: Copying a Web Site

The default web site name for a new web site is based on the template used with a
number appended to the end. For example, if you are creating an AJAX-enabled web
site, the default name will be something like AJAXEnabledWebSite1. You can change
that name to anything you like.

The default location for a new web site will be the location used the last time you
created a new web site. If you change the location and name in Figure B-4 to some-
thing like c:\WebSites\OrderEntrySystem, then the next time you create a new web
site, the default location and name will be c:\WebSites\AJAXEnabledWebSite2
(assuming there is already a web site named AJAXEnabledWebSite1 in that folder).

There is one more piece of this puzzle that will be helpful to know. The IDE keeps
track of files that comprise the web site, the default language, and build information.
This information is saved in a text file, referred to as the solution file, with the same
name as the web site (MyNewWebSite in Figure B-4) and an extension of .sln. You
can open the web site in the IDE by double-clicking the solution file.

By default, this solution file is created in a folder with the same name as the web site
in c:\Documents and Settings\<username>\My Documents\Visual Studio 2005\Projects,
where <username> is replaced with your user name. You can change this default
location by opening the IDE and clicking Tools ➝ Options... ➝ Projects and Solu-
tions ➝ General and changing the Visual Studio projects location, as shown in
Figure B-5.

Be sure to check the Show all settings checkbox in the lower-left cor-
ner of the Options dialog box; otherwise, you will not see many of the
options, including the default locations shown in Figure B-5.

There is one more file created, with the same name as the solution file and an exten-
sion of .suo. This file contains developer-specific information relating to the web site,
such as which files are displayed in the editing surface, which page is the start page
for the web site, breakpoints, and so on. If this file is deleted, or otherwise missing, a
new one is automatically created the next time the web site is opened in the IDE.

Now that you know how the files that comprise a web site are organized, you will
better understand how to copy a web site. There are at least two different ways to do
this: inside the IDE and outside the IDE.

Copying the Web Site Without Using the IDE
To copy a web site without using the IDE, simply copy the web site folder to another
location and name, using Windows Explorer. The new copy can be in the same par-
ent folder as the original, or in a totally different location. For example, suppose the
original web site is called OrderEntrySystem and is located in the following folder:

c:\WebSites\OrderEntrySystem

Copying the Web Site with the IDE | 419

You want to copy it to a new name, say OrderEntrySystemTest. Copy the original
folder to the following:

c:\WebSites\OrderEntrySystemTest

To work with this new web site, open the IDE, click Open Web Site, and navigate to
this new folder. That’s it.

The IDE will automatically create the necessary solution file and put it in the default
location.

Copying the Web Site with the IDE
You can also copy a web site from within the IDE. The advantage of doing it inside the
IDE instead of in Windows Explorer is that you have a lot more flexibility. Not only
can you copy the site to your local file system, but you can also simultaneously create
an IIS virtual directory or copy it to an FTP or remote web site over the Internet.

In this example, we will copy the AdventureWorks web site to another web site,
called AdventureWorksRevisited, in the same parent folder.

There are two equivalent ways to begin the process of copying a web site from within
the IDE. One is to click the Website ➝ Copy Web Site... menu item. The other is to
click the Copy Web Site icon at the top of the Solution Explorer (see Figure B-6).

Figure B-5. Changing the location of the solution files in the Options dialog box.

Default location of
the solution files

420 | Appendix B: Copying a Web Site

Either way you do it, the Copy Web Site window will open in the middle window of
the IDE, as shown in Figure B-7.

Figure B-6. The Copy Web Site icon at the top of the Solution Explorer is a quick way to start the
copying process.

Figure B-7. The Copy Web Site window looks like this when you first open it. You use the Connect
button to locate the destination folder.

Copy web site icon

Connect button

Copying the Web Site with the IDE | 421

Click the Connect button, indicated in Figure B-7, to bring up the Open Web Site
dialog box shown in Figure B-8. This dialog is used to select the target destination of
the copied web site.

The screen shots in these figures were taken after most of the example
web sites in this book were already created. Obviously, the folders you
see in your file system will be different.

Notice the four icons down the left side of the dialog box. In Figure B-8, the File Sys-
tem icon is selected and the local file system is shown with the source web site ini-
tially highlighted.

Clicking any of the other three location icons will replace the File System browser in
Figure B-8 with the appropriate means of specifying the location. For instance, if you
click FTP site, you will be offered fields for the name of the FTP server and login
credentials.

Figure B-8. The Connect button brings up the Open Web Site dialog box, where you choose the
destination for the copy.

422 | Appendix B: Copying a Web Site

Because you want to copy the target web site to another location within the same
parent folder, click that parent folder, LearnASP, and then click the Create New
Folder icon, indicated in Figure B-9. This will create a new folder under LearnASP
called WebSite, indicated in Figure B-9, ready to be renamed to something more
meaningful.

A very common mistake to make here is to forget to select the parent
directory before clicking the Create New Folder icon. Because the dia-
log initially opens with the source folder selected, this mistake will cre-
ate the new web site folder as a subdirectory of the source folder,
which is almost certainly not what you intended.

Replace WebSite with the target name—in this case, AdventureWorksRevisited—and
tab off the menu tree. The new folder will be created and the full folder name
inserted into the text box, as shown in Figure B-10.

Figure B-9. In the Open Web Site dialog box, click the New Folder icon to create a new web site
folder. You’ll be invited to rename it immediately.

New web site folder

Create New Folder icon

Copying the Web Site with the IDE | 423

Click the Open button to select the folder you just created as the target.

You will be brought back to the Copy Web Site window, similar to that shown back
in Figure B-7, except now the target location will be indicated as the Remote Web
Site, as shown in Figure B-11.

Now you can select the items in the grid on the Source side of the window that you
want to copy, which is typically all of them. Click the first item in the list, then hold
down Shift and click the last one. When items are selected, the buttons in the mid-
dle between the two grids become active. Click the right-pointing arrow to copy over
the selected files and folders. The finished result will look something like that shown
in Figure B-12.

The new web site has now been created and the contents copied over.

To work on this web site, click Open Web Site on the Start page or the File ➝ Open
Web Site menu item and select the new web site.

Figure B-10. Open Web Site dialog box with the new web site folder created.

424 | Appendix B: Copying a Web Site

Figure B-11. After you’ve created the target web site folder, the Copy Web Site window will show
the target.

Figure B-12. After you’ve copied the web site, both project folders should show the same contents.

425

Appendix C APPENDIX C

Answers to Quizzes and Exercises3

Chapter 1: Getting Started

Answers to Quiz Questions
1. You can create a new web site by selecting File ➝ New Web Site, or by clicking

the “Create: Web Site” link on the Start page.

2. The two views are Design view, which shows you the appearance of your page,
and Source view, which shows you the markup.

3. The settings that are specific to each control are called properties, and you can
view them in the Properties window of the IDE.

4. The controls are kept in the Toolbox, which is on the left side of the IDE by
default.

5. There are three different ways to run your program: click Debug ➝ Start Debug-
ging, press F5, or click the Start Debugging icon on the toolbar.

6. The Click event.

7. The code for the event handler is located in the code-behind file.

8. You can get to the code-behind file by selecting the file in the Solution Explorer,
or by double-clicking the control whose default event you want to set up.

9. Use the Label control’s Text property to set the content of the label. You’ll see
that many controls have a Text property that you can set.

10. The web page is kept in a file with the .aspx extension.

Answers to Exercises
Exercise 1-1. There is no “right” or “wrong” answer to this exercise; you’re just play-
ing around with the properties to get a feel for the range of options you have. If the
changes you’re making aren’t showing up properly, make sure you’ve selected the

426 | Appendix C: Answers to Quizzes and Exercises

label control; you can tell because “Label1” will be displayed at the top of the prop-
erties page. If you’re having difficulty changing the text of the label, be sure you’re
looking in the Default.aspx.vb code-behind file, which you can access by clicking
the tab at the top of the page, or through the Solution Explorer.

If you switch to Source view, you’ll see the properties you’ve assigned reflected in the
markup, and you can change the values here as well, of course. Example C-1 shows
the markup for one author’s page.

Chapter 2: Building Web Applications

Answers to Quiz Questions
1. A postback is when the page is returned to the server to evaluate code handlers,

and the same page is sent back to the browser afterward.

2. The first type of postback in AJAX is synchronous, in which the entire page is
sent back to the server, as with a non-AJAX page. The second type is asynchro-
nous, in which only part of the page is updated, and the rest is unaffected.

3. The ID property. The IDE sets this property for you (although you can change
it), and you need it to refer to the control from elsewhere on the page.

4. Use a TextBox control with the TextMode property set to Password.

5. Use a ListBox control, which allows multiple selections and is best for long lists.

6. Set the GroupName property of each radio button to the same group.

Example C-1. One version of the markup for Exercise 1-1

<%@ Page Language="VB" AutoEventWireup="false" CodeFile="Default.aspx.vb"
Inherits="_Default" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" >
<head runat="server">
 <title>Untitled Page</title>
</head>
<body>
 <form id="form1" runat="server">
 <div>
 <asp:Button ID="Button1" runat="server" Text="Button" />
 <asp:Label ID="Label1" runat="server" BorderStyle="Dotted"
 BorderWidth="2px" Font-Bold="True" Font-Names="Arial"
 Font-Size="Large" ForeColor="Green" ></asp:Label></div>
 </form>
</body>
</html>

Chapter 2: Building Web Applications | 427

7. A Panel control groups other controls together in one place, and enables you to
make all the controls visible or invisible as a whole.

8. The SelectedItem property retrieves the Text property of the currently selected
item of the control.

9. Set the control’s Visible property to false. The control will be present, but won’t
be rendered until something changes the Visible property.

10. Set the HyperLink control’s Target property to _blank.

Answers to Exercises
Exercise 2-1. This exercise isn’t too tricky; you’re just getting used to adding con-
trols to the page, and seeing how nested UpdatePanel controls work. If the labels
aren’t updating independently of each other, make sure you have the buttons and
labels inside the appropriate update panels. If not, you can drag them to their proper
places. Also make sure, in the code-behind file, that your event handler is changing
the text of the appropriate label. Example C-2 shows the markup for this exercise.

Example C-2. The markup file for Exercise 1-2

<%@ Page Language="VB" AutoEventWireup="true" CodeFile="Default.aspx.vb"
Inherits="_Default" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title>Exercise 2-1</title>
</head>
<body>
 <form id="form1" runat="server">
 <asp:ScriptManager ID="ScriptManager1" runat="server" />
 <div>
 Page Loaded at:
 <asp:Label ID="lblPageLoad" runat="server" Text="Label"
 Width="200px"></asp:Label>
 <asp:Button ID="btnPostback" runat="server" Text="Postback" />
 <asp:UpdatePanel ID="UpdatePanel1" runat="server">
 <ContentTemplate>
 Partial-Page update at:<asp:Label ID="lblPartialUpdate"
 runat="server" Text="Label"
 Width="200px"></asp:Label>
 <asp:Button ID="btnPartialUpdate" runat="server"
 OnClick="btnPartialUpdate_Click"
 Text="Partial Update" />
 <asp:UpdatePanel ID="UpdatePanel2" runat="server">
 <ContentTemplate>
 Another partial-page update at:<asp:Label
 ID="lblOtherPartialUpdate" runat="server"
 Text="Label" Width="200px"></asp:Label>

428 | Appendix C: Answers to Quizzes and Exercises

Example C-3 shows the code-behind file for this exercise.

Exercise 2-2. This exercise isn’t too hard, and there are several valid solutions. The
only challenge comes in choosing the best controls for the situation. The choice of
ice cream type is a somewhat long list, and only allows for one selection, so a
DropDownList control is probably best. For the toppings, again it’s a long list, but
multiple selections are possible, so you could use a ListBox, but you need to make
sure to set the SelectionMode property to Multiple. The choice of cone or dish is
much simpler; there are only two options, and they’re mutually exclusive, so a pair
of RadioButton controls is the way to go here. Be sure to give them a common
GroupName, so they’ll be part of the same group.

Of course, that’s not the only way to solve the problem. For an ice-cream parlor, you
might think it’s good marketing to display all your flavors and toppings for your cus-
tomers to choose from. In that case, you could use a RadioButtonList for the ice
cream, and a CheckBoxList for the toppings. When you’re designing a page, you need
to consider all the customer’s requirements.

 <asp:Button ID="btnOtherPartialUpdate" runat="server"
 OnClick="btnOtherPartialUpdate_Click"
 Text="Another Partial Update" />
 </ContentTemplate>
 </asp:UpdatePanel>
 </ContentTemplate>
 </asp:UpdatePanel>
 </div>
 </form>
</body>
</html>

Example C-3. The code-behind file for Exercise 2-1

Partial Class _Default
 Inherits System.Web.UI.Page

 Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs) _
 Handles Me.Load
 lblPageLoad.Text = DateTime.Now
 End Sub

 Protected Sub btnPartialUpdate_Click(ByVal sender As Object, ByVal e _
 As System.EventArgs)
 lblPartialUpdate.Text = DateTime.Now
 End Sub

 Protected Sub btnOtherPartialUpdate_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs)
 lblOtherPartialUpdate.Text = DateTime.Now
 End Sub
End Class

Example C-2. The markup file for Exercise 1-2 (continued)

Chapter 2: Building Web Applications | 429

One solution to this exercise is shown in Figure C-1. We didn’t use much fancy styl-
ing here, but we did put the controls in a table to make the layout easier. The
markup for this solution is shown in Example C-4.

Figure C-1. One solution to Exercise 2-2.

Example C-4. Markup for one solution to Exercise 2-2

<%@ Page Language="VB" AutoEventWireup="true" CodeFile="Default.aspx.vb"
Inherits="_Default" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title>Exercise 2-2</title>
</head>
<body>
 <form id="form1" runat="server">
 <asp:ScriptManager ID="ScriptManager1" runat="server" />
 <div>
 <table>
 <tr>
 <td colspan=2>
 Welcome to Ajax Ice Cream!

 Please place your order:</td>
 </tr>
 <tr valign=top>
 <td>
 Select your ice cream:

430 | Appendix C: Answers to Quizzes and Exercises

 <asp:DropDownList ID="ddlIceCream" runat="server">
 <asp:ListItem Value="Van">Vanilla</asp:ListItem>
 <asp:ListItem Value="Choc">Chocolate</asp:ListItem>
 <asp:ListItem Value="Straw">Strawberry</asp:ListItem>
 <asp:ListItem Value="Mint">Mint Chocolate
 Chip</asp:ListItem>
 <asp:ListItem Value="ButPec">Butter
 Pecan</asp:ListItem>
 <asp:ListItem Value="Coff">Coffee</asp:ListItem>
 <asp:ListItem Value="Pist">Pistachio</asp:ListItem>
 <asp:ListItem Value="Coco">Coconut</asp:ListItem>
 <asp:ListItem Value="Bub">Bubble Gum</asp:ListItem>
 <asp:ListItem Value="CotCan">Cotton
 Candy</asp:ListItem>
 </asp:DropDownList></td>
 <td>
 Select your toppings:

 <asp:ListBox ID="lbToppings" runat="server" Rows="3"
 SelectionMode="Multiple">
 <asp:ListItem Value="CSprink">Chocolate
 Sprinkles</asp:ListItem>
 <asp:ListItem Value="RSprink">Rainbow
 Sprinkles</asp:ListItem>
 <asp:ListItem Value="HFudge">Hot Fudge</asp:ListItem>
 <asp:ListItem Value="Carm">Caramel</asp:ListItem>
 <asp:ListItem Value="CDough">Cookie
 Dough</asp:ListItem>
 <asp:ListItem Value="Oreo">Oreo Cookies</asp:ListItem>
 <asp:ListItem Value="Pretz">Pretzel bits</asp:ListItem>
 <asp:ListItem Value="Nuts">Crushed
 Walnuts</asp:ListItem>
 <asp:ListItem Value="CBean">Coffee beans</asp:ListItem>
 <asp:ListItem Value="Candy">Crushed Candy
 Bars</asp:ListItem>
 </asp:ListBox></td>
 </tr>
 <tr>
 <td colspan=2>
 Cone or dish?
 <asp:RadioButton ID="rbCone" runat="server"
 GroupName="grpConeDish" Text="Cone" />
 <asp:RadioButton ID="rbDish" runat="server"
 GroupName="grpConeDish" Text="Dish"
 /></td>
 </tr>
 <tr>
 <td colspan=2 align=center>
 <asp:Button ID="btnSubmit" runat="server" Text="Submit"
 /></td>
 </tr>
 </table>

Example C-4. Markup for one solution to Exercise 2-2 (continued)

Chapter 2: Building Web Applications | 431

Exercise 2-3. Creating the web page for this exercise is simple; you just need a
TextBox, a Label, a Button, and some plain text to tell the user what to do. The only
hitch is that you need to remember to set the TextMode property of the TextBox to
Password. The next step is writing the event handler for the Submit button. All you
want to do is set the Text property of the Label to be the same as the Text property of
the TextBox. For that, you need just one line:

lblPassword.Text = txtPassword.Text

Notice that even though the user can’t see the text that’s typed in the TextBox, the
page can, and can assign that value to another control (the label, in this case). This
is, of course, a terrible security practice, but it illustrates the point. Example C-5
shows the markup file for this exercise, and Example C-6 shows the short event
hander for the Submit button.

 </div>
 </form>
</body>
</html>

Example C-5. The markup for Exercise 2-3

<%@ Page Language="VB" AutoEventWireup="true" CodeFile="Default.aspx.vb"
Inherits="_Default" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title>Exercise 2-3</title>
</head>
<body>
 <form id="form1" runat="server">
 <asp:ScriptManager ID="ScriptManager1" runat="server" />
 <div>
 Enter your password:
 <asp:TextBox ID="txtPassword" runat="server"
 TextMode="Password"></asp:TextBox>

 The password you entered is:
 <asp:Label ID="lblPassword" runat="server"></asp:Label>

 <asp:Button ID="btnSubmit" runat="server" Text="Submit" /></div>
 </form>
</body>
</html>

Example C-4. Markup for one solution to Exercise 2-2 (continued)

432 | Appendix C: Answers to Quizzes and Exercises

Exercise 2-4. In this exercise, you’re combining the assignment you did in Exercise
2-3 with the DropDownList control you learned about earlier. When you create the
drop-down list, either with the ListItem editor, or by hand, you assign the ISBN
number to the Value property of the ListItem. That way, when the user makes a
selection, the user never sees the ISBN number, but it appears in the output anyway.
You can see how this would be useful for a database, so that you can hide your inter-
nal system from the users, but still allow them to choose by title.

The only twist for this exercise is that it lacks a Submit button. Therefore, to get the
postback, you have to set the DropDownList control’s AutoPostBack property to true,
so that the page posts back every time the user makes a selection. That means you
have to put the event handler in the Load event for the page, just as you did in the
Postbacks example in this chapter. The event handler works a bit differently than in
Exercise 2-3:

lblID.Text = ddlBookList.SelectedValue
lblTitle.Text = ddlBookList.SelectedItem.Text

To assign the text to the ID label, you need to retrieve the Value property of the
selected item in the drop-down list—that’s the SelectedValue property. Assigning
the title text is slightly trickier: You retrieve the Text property of the SelectedItem
property of the drop-down list: ddlBookList.SelectedItem.Text.

The markup for this exercise is shown in Example C-7, and the event handler is in
Example C-8.

Example C-6. The event handler for the Submit button in Exercise 2-3

Partial Class _Default
 Inherits System.Web.UI.Page

 Protected Sub btnSubmit_Click(ByVal sender As Object, ByVal e As _
 System.EventArgs) Handles btnSubmit.Click
 lblPassword.Text = txtPassword.Text
 End Sub
End Class

Example C-7. The markup for Exercise 2-4

<%@ Page Language="VB" AutoEventWireup="true" CodeFile="Default.aspx.vb" Inherits="_
Default" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title>Exercise 2-4</title>
</head>
<body>
 <form id="form1" runat="server">
 <asp:ScriptManager ID="ScriptManager1" runat="server" />
 <div>
 Which book are you interested in?

Chapter 3: Snappier Web Sites with AJAX | 433

Chapter 3: Snappier Web Sites with AJAX

Answers to Quiz Questions
1. Nothing—when you create an AJAX-enabled web site, the ScriptManager con-

trol is included on your page by default.

2. The EnablePartialRendering property is the critical property of the
ScriptManager control, which is why it is set to True by default.

3. The UpdatePanel control is the key control that enables asynchronous updates.

4. No, you can’t. The extender controls need to have a target control to extend;
they don’t work alone.

5. All the Extender controls have a property called TargetControlID, which indi-
cates the control that the extender acts on.

6. You have to set the WatermarkText property from Source view; it’s not visible
from Design view.

7. Yes; style sheets aren’t necessary to use TextBoxWatermarkExtender; they’re just a
nice touch.

 <asp:DropDownList ID="ddlBookList" runat="server" AutoPostBack="true">
 <asp:ListItem Value="00916X">Programming ASP.NET</asp:ListItem>
 <asp:ListItem Value="006993">Programming C#</asp:ListItem>
 <asp:ListItem Value="004385">Programming Visual Basic
 .NET</asp:ListItem>
 <asp:ListItem Value="102097">Learning C# 2005</asp:ListItem>
 </asp:DropDownList>

 Thank you for your interest in

 <asp:Label ID="lblID" runat="server" Text="ID number"></asp:Label>

 <asp:Label ID="lblTitle" runat="server"
 Text="Title"></asp:Label></div>
 </form>
</body>
</html>

Example C-8. The event handler for Exercise 2-4

Partial Class _Default
 Inherits System.Web.UI.Page

 Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)
 Handles Me.Load
 lblID.Text = ddlBookList.SelectedValue
 lblTitle.Text = ddlBookList.SelectedItem.Text
 End Sub
End Class

Example C-7. The markup for Exercise 2-4 (continued)

434 | Appendix C: Answers to Quizzes and Exercises

8. It allows you to hide choices for a control within an UpdatePanel, saving valu-
able screen space.

9. The Commit() method is the method of the PopUpControlExtender that causes the
target control to display the results.

10. A CollapsiblePanelExtender, logically enough, lets you expand or collapse a
Panel control.

Answers to Exercises
Exercise 3-1. Start by creating a web site called Exercise 3-1; be sure to select ASP.
NET AJAX-Enabled Web Site from the New Web Site dialog box. When the new
web site opens, type in “Shipping State,” and add a TextBox control called txtState.
Set its Text property to “Click Here,” its ReadOnly property to True, and its Width
property to 70 px. Those are the controls the user will see to start out. Now add an
UpdatePanel control below that. Inside the UpdatePanel, place a standard Panel, and
name it pnlPopup. Inside the panel, place the DropDownList control, and call it
ddlStates. Set the AutoPostBack property of ddlStates to True—this is an important
step. Now use the ListItem Editor to fill in the six items. Be sure to set the Text of
each ListItem to the full name of the state, and the Value to the state’s postal code.

So far, it’s easy. Now add a PopupControlExtender to the page, and call it pceStates.
Switch to Source view to set the properties. The target is the TextBox, so set
TargetControlID to txtState. The Panel is the control that you want to pop up, so set
PopupControlID to pnlPopup. Set Position to Bottom, just to make it neater.

The PopupControlExtender is in place now, and ready to go, but it still needs to know
what to do, and for that, you need an event handler for the DropDownList. Double-
click ddlStates to open the default event handler, SelectedIndexChanged. You need to
call the Commit method of pceStates here, and pass in the value that the user has
selected, not the text. So add this line of code to the event handler:

Protected Sub ddlStates_SelectedIndexChanged(ByVal sender As Object, _
ByVal e As System.EventArgs)
 pceStates.Commit(ddlStates.SelectedValue)
End Sub

Run your application. You should find that the panel is hidden until you click it, and
that the value is automatically passed to txtState when you make a selection.
Example C-9 shows the markup for Default.aspx for this exercise.

Example C-9. The markup file for Exercise 3-1

<%@ Page Language="VB" AutoEventWireup="true" CodeFile="Default.aspx.vb"
Inherits="_Default" %>

<%@ Register Assembly="AjaxControlToolkit" Namespace="AjaxControlToolkit"
TagPrefix="cc1" %>

Chapter 3: Snappier Web Sites with AJAX | 435

Example C-10 shows the very brief code-behind file.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title>Exercise 3-1</title>
</head>
<body>
 <form id="form1" runat="server">
 <asp:ScriptManager ID="ScriptManager1" runat="server" />
 <div>
 Shipping State:
 <asp:TextBox ID="txtState" runat="server" ReadOnly="True"
 Width="70px">Click Here</asp:TextBox>
 <asp:Panel ID="pnlPopup" runat="server" Height="50px" Width="125px">
 <asp:UpdatePanel ID="UpdatePanel1" runat="server">
 <ContentTemplate>
 <asp:DropDownList ID="ddlStates" runat="server"
 AutoPostBack="True"
 OnSelectedIndexChanged="ddlStates_SelectedIndexChanged">
 <asp:ListItem Value="CT">Connecticut</asp:ListItem>
 <asp:ListItem Value="MA">Massachusetts</asp:ListItem>
 <asp:ListItem Value="NJ">New Jersey</asp:ListItem>
 <asp:ListItem Value="NY">New York</asp:ListItem>
 <asp:ListItem Value="PA">Pennsylvania</asp:ListItem>
 <asp:ListItem Value="RI">Rhode Island</asp:ListItem>
 </asp:DropDownList>
 </ContentTemplate>
 </asp:UpdatePanel>
 </asp:Panel>
 </div>
 <cc1:PopupControlExtender ID="pceStates" runat="server"
 TargetControlID="txtState" PopupControlID="pnlPopup" Position=Bottom>
 </cc1:PopupControlExtender>
 </form>
</body>
</html>

Example C-10. The code-behind file for Exercise 3-1

Partial Class _Default
 Inherits System.Web.UI.Page

 Protected Sub ddlStates_SelectedIndexChanged(ByVal sender As Object, _
 ByVal e As System.EventArgs)
 pceStates.Commit(ddlStates.SelectedValue)
 End Sub
End Class

Example C-9. The markup file for Exercise 3-1 (continued)

436 | Appendix C: Answers to Quizzes and Exercises

Exercise 3-2. This is a fairly simple extender to work with—it does what it says it
does. To start, create a new AJAX-enabled web site and call it Exercise 3-2. First add
the Panel control, call it pnlRounded, and set its Width to 150, its Height to 100, and its
BackColor to LightGray (or whatever you prefer). Add the Label control inside the
Panel, call it lblRounded, and set its Width to 50, its BackColor to DarkGray, its
ForeColor to White, and its Font.Bold to True.

So far, nothing particularly interesting has happened. Now, add two
RoundedCornersExtender controls: rceLabel and rcePanel. The first thing to do is
make sure that the TargetControlID for rceLabel is set to lblRounded, and that for
rcePanel, it’s set to pnlRounded. For the rest, you’ll have to check out the online doc-
umentation, which will tell you that there’s a property called Radius, and one called
Corners. Those properties aren’t available in Design view, so switch to Source view
and set the Radius for rceLabel to 2; for rcePanel, set the Radius to 8, and the Corners
to Top, so that the bottom corners of the Panel will be left square. There you go! It’s
not the most exciting extender, but you can see how you might use it to add a little
bit of style to your forms. The markup for this page is in Example C-11. There is no
code-behind file for this example.

Example C-11. The markup file for Exercise 3-2

<%@ Page Language="VB" AutoEventWireup="true" CodeFile="Default.aspx.vb"
Inherits="_Default" %>

<%@ Register Assembly="AjaxControlToolkit" Namespace="AjaxControlToolkit"
TagPrefix="cc1" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title>Exercise 3-2</title>
</head>
<body>
 <form id="form1" runat="server">
 <asp:ScriptManager ID="ScriptManager1" runat="server" />
 <div>
 <asp:Panel ID="pnlRounded" runat="server" Height="100px"
 Width="150px" BackColor="LightGray">

 <asp:Label ID="lblRounded" runat="server" BackColor="DarkGray"
 Text="Label" Width="50px" Font-Bold="True"
 ForeColor="White"></asp:Label>
 <cc1:RoundedCornersExtender ID="rceLabel" runat="server"
 TargetControlID="lblRounded" Radius=2 >
 </cc1:RoundedCornersExtender>
 </asp:Panel>
 </div>

Chapter 3: Snappier Web Sites with AJAX | 437

If you experiment with this extender, you’ll find that it doesn’t work on other con-
trols, such as the TextBox or the DropDownList. Sometimes the documentation doesn’t
tell you everything you need to know, and you can only find out by trial and error.

Exercise 3-3. This exercise is slightly tricky because of the need for two textboxes.
Start by creating an AJAX-enabled page. Type “Volume Level:” and then add a
TextBox control. This is the TextBox that you want to see in the finished page, so
name it txtVolume_Bound. Set its Width to 15px, and its ReadOnly property to True (you
don’t want users typing in there).

That’s the easy part. Now add another TextBox, called txtVolume, on a new line.
None of the display properties matter on this TextBox, because users will never see it.
Now add the SliderExtender, and call it sleVolume. Switch to Source view, set the
TargetControlID to txtVolume, the BoundControlID to txtVolume_Bound, and the
Maximum to 10. Run the application, and the slider should work as you’d expect,
although you’ll only see one TextBox. The markup for this page is shown in
Example C-12. There is no code-behind.

 <cc1:RoundedCornersExtender ID="rcePanel" runat="server"
 TargetControlID="pnlRounded" Radius=8
 Corners=top>
 </cc1:RoundedCornersExtender>
 </form>
</body>
</html>

Example C-12. The markup for Exercise 3-3

<%@ Page Language="VB" AutoEventWireup="true" CodeFile="Default.aspx.vb"
Inherits="_Default" %>

<%@ Register Assembly="AjaxControlToolkit" Namespace="AjaxControlToolkit"
TagPrefix="cc1" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title>Exercise 3-3</title>
</head>
<body>
 <form id="form1" runat="server">
 <asp:ScriptManager ID="ScriptManager1" runat="server" />
 <div>
 <div>
 Volume Level:
 <asp:TextBox ID="txtVolume_Bound" runat="server" Width="15px"
 ReadOnly="True"></asp:TextBox>

Example C-11. The markup file for Exercise 3-2 (continued)

438 | Appendix C: Answers to Quizzes and Exercises

As you can imagine, there are many possible uses for a control like this, and for
many of them, you would actually want to hide the textbox the control extends. You
could use it as an actual volume control, for one thing, or you could use several of
them to make a color slider like you find in a drawing application.

Chapter 4: Saving and Retrieving Data

Answers to Quiz Questions
1. A DataSource control.

2. Binding.

3. A connection string is a string that contains the information necessary to con-
nect to a database on a server. You can store the connection string in the web.
config file for later use.

4. Create (add a new record), Retrieve, Update (edit), and Delete.

5. Use the GridView’s Smart Tag and the “Choose Data Source” drop-down list.

6. Turn on paging by clicking the Smart Tag, and selecting Enable Paging.

7. It safeguards your data by only writing changes to the database if none of the
records have changed since the records were read.

8. Enable Updating and Deleting, from the Smart Tag.

9. Create an event handler for the RowDataBound event.

10. Use a WHERE clause.

Answers to Exercises
Exercise 4-1. Here’s one way to get a page that looks like Figure 4-27:

1. Create a new web site as usual. Name it Exercise 4-1.

2. Drag a SqlDataSource control onto the Design view.

 <asp:TextBox ID="txtVolume" runat="server">
 </asp:TextBox>
 <cc1:SliderExtender ID="sleVolume" runat="server"
 TargetControlID="txtVolume"
 BoundControlID="txtVolume_Bound"
 Maximum="10">
 </cc1:SliderExtender>
 </div>
 </div>
 </form>
</body>
</html>

Example C-12. The markup for Exercise 3-3 (continued)

Chapter 4: Saving and Retrieving Data | 439

3. Drag a GridView control onto the Design view. Click the GridView’s Smart Tag,
go to the “Choose Data Source” drop-down list, and select SqlDataSource1.

4. Click “Configure Data Source” in the Smart Tag. The Configure Data Source
Wizard starts. You can use the connection string from the other exercises in this
chapter. Click Next.

5. On the next page, click the radio button marked “Specify columns from a table
or view,” and select the Product table from the drop-down list. Check the boxes
for ProductID, Name, ProductNumber, Color, and ListPrice. The Wizard should
look like Figure C-2.

6. Click the WHERE button. In the Add WHERE Clause dialog, select Weight in
the Column drop-down list, select > (greater than) in the Operator drop-down
list, and None in the Source drop-down list. The Value field appears on the right
side of the box; enter 100 in the field. The dialog should look like Figure C-3.
Click Add to add the WHERE clause, and OK to return to the Wizard.

7. Click the Advanced button and check both Generate INSERT, UPDATE, and
DELETE statements and Use optimistic concurrency.

Figure C-2. Creating the Select statement for your GridView.

440 | Appendix C: Answers to Quizzes and Exercises

8. Click Next to go to the next page; then click Finish to close the Wizard. Remem-
ber that this query won’t work properly right now, so switch to Source view,
find the four instances of [Product], and change them to [Production].[Product],
like you did earlier in the chapter.

9. Return to Design View, click the Smart Tag for the GridView, and check the boxes
for Enable Paging, Enable Sorting, Enable Editing, and Enable Deletion. Click
AutoFormat, and select the Professional color scheme. Run your application.

The Source code for this application looks like Example C-13.

Figure C-3. Adding the Where clause for your GridView.

Example C-13. The markup for Exercise 4-1

<%@ Page Language="VB" AutoEventWireup="true" CodeFile="Default.aspx.vb"
Inherits="_Default" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title>Exercise 4-1</title>
</head>
<body>
 <form id="form1" runat="server">
 <asp:ScriptManager ID="ScriptManager1" runat="server" />

Chapter 4: Saving and Retrieving Data | 441

 <div>
 <asp:SqlDataSource ID="SqlDataSource1" runat="server"
 ConnectionString=
 "<%$ ConnectionStrings:AdventureWorksConnectionString %>"
 SelectCommand="SELECT [ProductID], [Name], [ProductNumber],
 [Color], [ListPrice] FROM [Production].[Product]
 WHERE ([Weight] > @Weight)"
 ConflictDetection="CompareAllValues"
 DeleteCommand="DELETE FROM [Production].[Product]
 WHERE [ProductID] = @ProductID"
 InsertCommand="INSERT INTO [Production].[Product] ([Name],
 [ProductNumber], [Color], [ListPrice])
 VALUES (@Name, @ProductNumber, @Color, @ListPrice)"
 OldValuesParameterFormatString="original_{0}"
 UpdateCommand="UPDATE [Production].[Product]
 SET [Name] = @Name, [ProductNumber] = @ProductNumber,
 [Color] = @Color, [ListPrice] = @ListPrice
 WHERE [ProductID] = @ProductID">
 <SelectParameters>
 <asp:Parameter DefaultValue="100" Name="Weight" Type="Decimal" />
 </SelectParameters>
 <DeleteParameters>
 <asp:Parameter Name="ProductID" Type="Int32" />
 </DeleteParameters>
 <UpdateParameters>
 <asp:Parameter Name="Name" Type="String" />
 <asp:Parameter Name="ProductNumber" Type="String" />
 <asp:Parameter Name="Color" Type="String" />
 <asp:Parameter Name="ListPrice" Type="Decimal" />
 <asp:Parameter Name="ProductID" Type="Int32" />
 </UpdateParameters>
 <InsertParameters>
 <asp:Parameter Name="Name" Type="String" />
 <asp:Parameter Name="ProductNumber" Type="String" />
 <asp:Parameter Name="Color" Type="String" />
 <asp:Parameter Name="ListPrice" Type="Decimal" />
 </InsertParameters>
 </asp:SqlDataSource>
 </div>
 <asp:GridView ID="GridView1" runat="server"
 DataSourceID="SqlDataSource1" CellPadding="4"
 ForeColor="#333333" GridLines="None"
 AllowPaging="True" AllowSorting="True">
 <FooterStyle BackColor="#5D7B9D" Font-Bold="True" ForeColor="White" />
 <RowStyle BackColor="#F7F6F3" ForeColor="#333333" />
 <EditRowStyle BackColor="#999999" />
 <SelectedRowStyle BackColor="#E2DED6" Font-Bold="True"
 ForeColor="#333333" />
 <PagerStyle BackColor="#284775" ForeColor="White"
 HorizontalAlign="Center" />
 <HeaderStyle BackColor="#5D7B9D" Font-Bold="True" ForeColor="White" />
 <AlternatingRowStyle BackColor="White" ForeColor="#284775" />

Example C-13. The markup for Exercise 4-1 (continued)

442 | Appendix C: Answers to Quizzes and Exercises

Exercise 4-2. Adding labels and textboxes to your page is easy. The tricky bit is that
you need to change the content of the textboxes whenever the user selects a row in
the GridView. Fortunately, you’ve seen the SelectedIndexChanged event, which makes
it easy to send data to controls based on a user’s selections in the GridView.

Start by copying the web site from Exercise 4-1 to a new web site, Exercise 4-2, as
explained in Appendix B.

Click the GridView’s Smart Tag, and check the Enable Selection checkbox. The Select
links show up next to the Edit and Delete links that are already there.

Drag a Label onto the Design view, below the GridView. Name it lblName, and change
the text to “Name:”. Drag a TextBox next to the Label, name it txtName, and set its
ReadOnly property to True. Add another Label, named lblColor, with text of “Color:”.
Finally, add a second TextBox, name it txtColor, and set its ReadOnly property to True.

You’re got all the parts in place, but now you need to connect the Select link in the
GridView to the two TextBoxes. Double-click one of the Select links to open the
SelectedIndexChanged event handler for GridView1. Add the following code:

Protected Sub GridView1_SelectedIndexChanged(ByVal sender As Object,_
 ByVal e As System.EventArgs) Handles GridView1.SelectedIndexChanged
 If GridView1.SelectedRow.RowType = DataControlRowType.DataRow Then
 Dim cellName As TableCell = GridView1.SelectedRow.Cells(2) ' Name column
 Dim cellColor As TableCell = GridView1.SelectedRow.Cells(4) ' Color column
 txtName.Text = cellName.Text
 txtColor.Text = cellColor.Text
 End If
End Sub

This is very similar to what you did earlier in the chapter. GridView1.SelectedRow rep-
resents the currently selected row—the one the user clicked. First, you check to see if
SelectedRow is a DataRow. If it is, you create a cell variable called cellName, and set
that equal to the cell at index 2 in SelectedRow, because you know that’s the Name
column (remember that the row starts at index 0). Similarly, you create a cell
cellColor, which is set to the cell at index 4. Then you assign the Text properties of
each of these cells to the respective TextBoxes.

Run your application and try it out. As you select different rows, the values in the
TextBoxes change. You can see how this would be useful for customers to select
products on your order form.

 <Columns>
 <asp:CommandField ShowDeleteButton="True" ShowEditButton="True" />
 </Columns>
 </asp:GridView>
 </form>
</body>
</html>

Example C-13. The markup for Exercise 4-1 (continued)

Chapter 4: Saving and Retrieving Data | 443

Example C-14 shows the source code for Exercise 4-2.

Example C-14. The markup for Exercise 4-2

<%@ Page Language="VB" AutoEventWireup="true" CodeFile="Default.aspx.vb" Inherits="_
Default" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN" "http://www.w3.org/TR/xhtml11/DTD/
xhtml11.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title>Exercise 4-2</title>
</head>
<body>
 <form id="form1" runat="server">
 <asp:ScriptManager ID="ScriptManager1" runat="server" />
 <div>
 <asp:SqlDataSource ID="SqlDataSource1" runat="server"
 ConnectionString=
 "<%$ ConnectionStrings:AdventureWorksConnectionString %>"
 SelectCommand="SELECT [ProductID], [Name], [ProductNumber],
 [Color], [ListPrice] FROM [Production].[Product]
 WHERE ([Weight] > @Weight)"
 DeleteCommand="DELETE FROM [Production].[Product]
 WHERE [ProductID] = @original_ProductID
 AND [Name] = @original_Name
 AND [ProductNumber] = @original_ProductNumber
 AND [Color] = @original_Color
 AND [ListPrice] = @original_ListPrice"
 InsertCommand="INSERT INTO [Production].[Product]
 ([Name], [ProductNumber], [Color], [ListPrice])
 VALUES (@Name, @ProductNumber, @Color, @ListPrice)"
 UpdateCommand="UPDATE [Production].[Product]
 SET [Name] = @Name, [ProductNumber] = @ProductNumber,
 [Color] = @Color, [ListPrice] = @ListPrice
 WHERE [ProductID] = @original_ProductID
 AND [Name] = @original_Name
 AND [ProductNumber] = @original_ProductNumber
 AND [Color] = @original_Color
 AND [ListPrice] = @original_ListPrice"
 ConflictDetection="CompareAllValues"
 OldValuesParameterFormatString="original_{0}">
 <SelectParameters>
 <asp:Parameter DefaultValue="100" Name="Weight" Type="Decimal" />
 </SelectParameters>
 <DeleteParameters>
 <asp:Parameter Name="original_ProductID" Type="Int32" />
 <asp:Parameter Name="original_Name" Type="String" />
 <asp:Parameter Name="original_ProductNumber" Type="String" />
 <asp:Parameter Name="original_Color" Type="String" />
 <asp:Parameter Name="original_ListPrice" Type="Decimal" />
 </DeleteParameters>

444 | Appendix C: Answers to Quizzes and Exercises

 <UpdateParameters>
 <asp:Parameter Name="Name" Type="String" />
 <asp:Parameter Name="ProductNumber" Type="String" />
 <asp:Parameter Name="Color" Type="String" />
 <asp:Parameter Name="ListPrice" Type="Decimal" />
 <asp:Parameter Name="original_ProductID" Type="Int32" />
 <asp:Parameter Name="original_Name" Type="String" />
 <asp:Parameter Name="original_ProductNumber" Type="String" />
 <asp:Parameter Name="original_Color" Type="String" />
 <asp:Parameter Name="original_ListPrice" Type="Decimal" />
 </UpdateParameters>
 <InsertParameters>
 <asp:Parameter Name="Name" Type="String" />
 <asp:Parameter Name="ProductNumber" Type="String" />
 <asp:Parameter Name="Color" Type="String" />
 <asp:Parameter Name="ListPrice" Type="Decimal" />
 </InsertParameters>
 </asp:SqlDataSource>
 </div>
 <asp:GridView ID="GridView1" runat="server" DataSourceID="SqlDataSource1"
 CellPadding="4" ForeColor="#333333" GridLines="None"
 AllowPaging="True" AllowSorting="True" AutoGenerateColumns="False"
 DataKeyNames="ProductID">
 <FooterStyle BackColor="#5D7B9D" Font-Bold="True" ForeColor="White" />
 <RowStyle BackColor="#F7F6F3" ForeColor="#333333" />
 <EditRowStyle BackColor="#999999" />
 <SelectedRowStyle BackColor="#E2DED6" Font-Bold="True"
 ForeColor="#333333" />
 <PagerStyle BackColor="#284775" ForeColor="White"
 HorizontalAlign="Center" />
 <HeaderStyle BackColor="#5D7B9D" Font-Bold="True" ForeColor="White" />
 <AlternatingRowStyle BackColor="White" ForeColor="#284775" />
 <Columns>
 <asp:CommandField ShowDeleteButton="True" ShowEditButton="True"
 ShowSelectButton="True" />
 <asp:BoundField DataField="ProductID" HeaderText="ProductID"
 InsertVisible="False" ReadOnly="True"
 SortExpression="ProductID" />
 <asp:BoundField DataField="Name" HeaderText="Name"
 SortExpression="Name" />
 <asp:BoundField DataField="ProductNumber"
 HeaderText="ProductNumber" SortExpression="ProductNumber" />
 <asp:BoundField DataField="Color" HeaderText="Color"
 SortExpression="Color" />
 <asp:BoundField DataField="ListPrice" HeaderText="ListPrice"
 SortExpression="ListPrice" />
 </Columns>
 </asp:GridView>
 <asp:Label ID="lblName" runat="server" Text="Name:"></asp:Label>
 <asp:TextBox ID="txtName" runat="server" ReadOnly="True"></asp:TextBox>
 <asp:Label ID="lblColor" runat="server" Text="Color:"></asp:Label>
 <asp:TextBox ID="txtColor" runat="server" ReadOnly="True"></asp:TextBox>

Example C-14. The markup for Exercise 4-2 (continued)

Chapter 4: Saving and Retrieving Data | 445

Exercise 4-3. This is mostly a simple exercise, but it shows you how the AJAX
Update panels interact with GridViews.

1. Create an AJAX-enabled web site called Exercise 4-3.

2. Drag an UpdatePanel onto your page first. Everything else goes inside the
UpdatePanel.

3. Add some text inside the UpdatePanel, “Select the table you would like to see:”.
Drag two radio buttons into the UpdatePanel beneath that text. Name the first
one rbEmployee, set its text to “Show Employees,” and set its GroupName to
grpEmployeeCustomer. Name the second radio button rbCustomer, set its text to
“Show Customers,” and set its GroupName to grpEmployeeCustomer as well. Now
both buttons are part of the same group.

4. Drag a regular Panel into the UpdatePanel, and name it pnlEmployee. Put a
SQLDataSource inside pnlEmployee, and name it sdsEmployee. Add a GridView to
pnlEmployee, and call it gvEmployee.

5. Time to give gvEmployee something to do. Click its Smart Tag, select sdsEmployee
as the data source, and configure sdsEmployee to retrieve the EmployeeID,
ManagerID, and Title columns from the Employee table. Remember to go to
source view and add the schema. In this case, you need to replace [Employee]
with [HumanResources].[Employee]. Enable paging and sorting on gvEmployee,
and give it whatever formatting you like.

6. Now drag another regular Panel into the UpdatePanel, and name it pnlCustomer.
Add another SQLDataSource (sdsCustomer) and another GridView (gvCustomer) to
pnlCustomer.

7. gvCustomer needs some data as well. Click its Smart Tag, select sdsCustomer as
the data source, and configure sdsCustomer to retrieve the CustomerID,
AccountNumber, and CustomerType fields from the Customer table. Again, go to
source view and change [Customer] to [Sales].[Customer]. Enable paging and
sorting, and format it, if you want.

8. Everything’s easy so far, right? Now for the only tricky bit. You want
pnlEmployee to be visible when the rbEmployee radio button is clicked; when
rbCustomer is clicked, only pnlCustomer should be visible. You’ve seen how to do
that in Chapter 2.

9. Start out with neither panel visible. Click each panel, and set its Visible prop-
erty to false.

 </form>
</body>
</html>

Example C-14. The markup for Exercise 4-2 (continued)

446 | Appendix C: Answers to Quizzes and Exercises

10. Double-click rbEmployee, which creates the rbEmployee_CheckChanged event
handler for you. You want to change the visibility of pnlEmployee to be the same
as the Checked value of rbEmployee, and you want rbCustomer.Visible to have the
same value as rbCustomer.Checked. Since you know that rbEmployee and
rbCustomer can’t both be checked at the same time (because they’re part of the
same radio button group), you know that only one table will be visible. Here’s
the code to add to rbEmployee_CheckChanged:

Protected Sub rbEmployee_CheckedChanged(ByVal sender As Object, _
ByVal e As System.EventArgs)
 pnlEmployee.Visible = rbEmployee.Checked
 pnlCustomer.Visible = rbCustomer.Checked
End Sub

11. Go back to the .aspx file, click rbEmployee, and set its AutoPostBack property to
true, so that the table will show as soon as the button is clicked.

12. Now double-click rbCustomer to create the rbCustomer_CheckChanged event han-
dler, and add the exact same code. Also make sure to set rbCustomer’s
AutoPostBack property to true.

13. Test out your application. As you click each radio button, the table displayed
should change. You will see some delay the first time you click the radio button,
because the data for the GridView is being sent to the client, but after that, there’s
no postback, even if you change the page or sort the GridView.

Example C-15 shows the markup file for Exercise 4-3.

Example C-15. The markup file for Exercise 4-3

<%@ Page Language="VB" AutoEventWireup="true" CodeFile="Default.aspx.vb"
Inherits="_Default" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title>Exercise 4-3</title>
</head>
<body>
 <form id="form1" runat="server">
 <asp:ScriptManager ID="ScriptManager1" runat="server" />
 <asp:UpdatePanel ID="UpdatePanel1" runat="server">
 <ContentTemplate>
 Select the table you would like to see:

 <asp:RadioButton ID="rbEmployee" runat="server"
 GroupName="grpEmployeeCustomer"
 OnCheckedChanged="rbEmployee_CheckedChanged"
 Text="Show Employees" AutoPostBack="True" />

Chapter 4: Saving and Retrieving Data | 447

 <asp:RadioButton ID="rbCustomer" runat="server"
 GroupName="grpEmployeeCustomer"
 OnCheckedChanged="rbCustomer_CheckedChanged"
 Text="Show Customers" AutoPostBack="True" />

 <asp:Panel ID="pnlEmployee" runat="server" Height="50px"
 Width="125px" Visible="False">
 <asp:SqlDataSource ID="sdsEmployee" runat="server"
 ConnectionString=
 "<%$ ConnectionStrings:AdventureWorksConnectionString %>"
 SelectCommand="SELECT [EmployeeID], [ManagerID], [Title]
 FROM [HumanResources].[Employee]"></asp:SqlDataSource>
 <asp:GridView ID="gvEmployee" runat="server"
 AllowPaging="True" AllowSorting="True"
 DataSourceID="sdsEmployee" AutoGenerateColumns="False"
 DataKeyNames="EmployeeID" BackColor="White"
 BorderColor="#E7E7FF" BorderStyle="None" BorderWidth="1px"
 CellPadding="3" GridLines="Horizontal">
 <Columns>
 <asp:BoundField DataField="EmployeeID"
 HeaderText="EmployeeID" InsertVisible="False"
 ReadOnly="True" SortExpression="EmployeeID" />
 <asp:BoundField DataField="ManagerID"
 HeaderText="ManagerID" SortExpression="ManagerID" />
 <asp:BoundField DataField="Title" HeaderText="Title"
 SortExpression="Title" />
 </Columns>
 <FooterStyle BackColor="#B5C7DE" ForeColor="#4A3C8C" />
 <RowStyle BackColor="#E7E7FF" ForeColor="#4A3C8C" />
 <SelectedRowStyle BackColor="#738A9C" Font-Bold="True"
 ForeColor="#F7F7F7" />
 <PagerStyle BackColor="#E7E7FF" ForeColor="#4A3C8C"
 HorizontalAlign="Right" />
 <HeaderStyle BackColor="#4A3C8C" Font-Bold="True"
 ForeColor="#F7F7F7" />
 <AlternatingRowStyle BackColor="#F7F7F7" />
 </asp:GridView>
 </asp:Panel>

 <asp:Panel ID="pnlCustomer" runat="server" Height="50px"
 Width="125px" Visible="False">
 <asp:SqlDataSource ID="sdsCustomer" runat="server"
 ConnectionString=
 "<%$ ConnectionStrings:AdventureWorksConnectionString %>"
 SelectCommand="SELECT [CustomerID], [AccountNumber],
 [CustomerType]
 FROM [Sales].[Customer]">
 </asp:SqlDataSource>
 <asp:GridView ID="gvCustomer" runat="server"
 DataSourceID="sdsCustomer" AllowPaging="True"
 AllowSorting="True" AutoGenerateColumns="False"
 DataKeyNames="CustomerID" BackColor="White"

Example C-15. The markup file for Exercise 4-3 (continued)

448 | Appendix C: Answers to Quizzes and Exercises

Example C-16 shows the code-behind file for Exercise 4-3.

 BorderColor="#E7E7FF" BorderStyle="None"
 BorderWidth="1px" CellPadding="3" GridLines="Horizontal">
 <Columns>
 <asp:BoundField DataField="CustomerID"
 HeaderText="CustomerID" InsertVisible="False"
 ReadOnly="True" SortExpression="CustomerID" />
 <asp:BoundField DataField="AccountNumber"
 HeaderText="AccountNumber" ReadOnly="True"
 SortExpression="AccountNumber" />
 <asp:BoundField DataField="CustomerType"
 HeaderText="CustomerType"
 SortExpression="CustomerType" />
 </Columns>
 <FooterStyle BackColor="#B5C7DE" ForeColor="#4A3C8C" />
 <RowStyle BackColor="#E7E7FF" ForeColor="#4A3C8C" />
 <SelectedRowStyle BackColor="#738A9C" Font-Bold="True"
 ForeColor="#F7F7F7" />
 <PagerStyle BackColor="#E7E7FF" ForeColor="#4A3C8C"
 HorizontalAlign="Right" />
 <HeaderStyle BackColor="#4A3C8C" Font-Bold="True"
 ForeColor="#F7F7F7" />
 <AlternatingRowStyle BackColor="#F7F7F7" />
 </asp:GridView>
 </asp:Panel>

 </ContentTemplate>
 </asp:UpdatePanel>
 <div>
 </div>
 </form>
</body>
</html>

Example C-16. The code-behind file for Exercise 4-3

Partial Class _Default
 Inherits System.Web.UI.Page

 Protected Sub rbEmployee_CheckedChanged(ByVal sender As Object, _
 ByVal e As System.EventArgs)
 pnlEmployee.Visible = rbEmployee.Checked
 pnlCustomer.Visible = rbCustomer.Checked
 End Sub

 Protected Sub rbCustomer_CheckedChanged(ByVal sender As Object, _
 ByVal e As System.EventArgs)
 pnlEmployee.Visible = rbEmployee.Checked
 pnlCustomer.Visible = rbCustomer.Checked
 End Sub
End Class

Example C-15. The markup file for Exercise 4-3 (continued)

Chapter 4: Saving and Retrieving Data | 449

Solution to Exercise 4-4. You’re going to need several DataSource controls for this
exercise—one for each of the drop-down lists, and another for the GridView.

1. Call the first DataSource sdsCategorySource, and the first drop-down list
ddlCategory. Configure sdsCategorySource to retrieve the ProductCategoryID and
Name columns from the ProductCategory table (remember to go to Source view
and add the [Production] schema).

2. Click the Smart Tag on ddlCategory and select “Choose Data Source.” For the
“Select a data source” field, choose sdsCategorySource. For “Select a data field to
display in the DropDownList,” select the Name column—this is what you want
the user to see in the drop-down list. For “Select a data field for the value of the
DropDownList,” select ProductCategoryID. The control will automatically asso-
ciate each name with its appropriate value within the control, so you can use
them later. The Choose Data Source page should look like Figure C-4.

3. That’s one control set up. Add a label for the drop-down list if you like, and test
the application now to make sure everything is working. Your drop-down list
won’t do much of anything yet, but if the product categories appear in the list,
you’ll know you configured your data source properly.

Figure C-4. Select the source, name, and value properties for ddlCategory.

450 | Appendix C: Answers to Quizzes and Exercises

For the Subcategory drop-down list, you want to only show the subcategories that
are connected to the category the user chose. That’s only slightly trickier—you’ll
need a WHERE clause.

1. Add a SqlDataSource (call it sdsSubcategorySource), a DropDownList
(ddlSubcategory), and a label for the drop-down list. Configure
sdsSubcategorySource to retrieve the ProductSubcategoryID and Name columns
from the ProductSubcategory table.

2. Click the WHERE button, to add a WHERE clause. You want to display the subcat-
egories of the category in the first drop-down list, which means you want to
match on the ProductCategory column. Specifically, you want to select the rows
where the ProductCategoryID column is the same as whatever the user selected in
ddlCategory. The Wizard can do that for you. Select ProductCategoryID for the
Column, = for the Operator, and Control for the Source. The Control ID field on
the right becomes visible; select ddlCategory. You don’t need a default value,
because ddlCategory will always have some value. When you have all that set,
your WHERE clause dialog will look like Figure C-5.

3. Click Add to add the WHERE clause; then click OK to return to the Wizard. On
the Wizard, click Next, and then Finish. Remember to go to Source view and
add the [Production] schema.

Figure C-5. Setting the WHERE clause for ddlSubcategory.

Chapter 4: Saving and Retrieving Data | 451

4. You’ve got the data, so now you need to tell the drop-down list how to use it.
Click ddlSubcategory and select Choose Data Source. When the dialog appears,
select sdsSubcategorySource for the data source, select Name for the field to dis-
play, and select ProductSubcategoryID for the field to use for the value. Click OK.

5. Back in Design view, click ddlCategory, and set its AutoPostBack property to
true. You want ddlSubcategory to change as soon as the user makes a selection
in ddlCategory, so you want it to post back right away.

6. Save everything and test it. When you make a selection in the Category drop-
down list, the Subcategory drop-down list should change automatically. If it
doesn’t, go back and check the WHERE statement for ddlSubcategory.

Two drop-down lists are set now; time for the third.

1. Add another SqlDataSource (sdsColorSource) and another DropDownList
(ddlColor). Add a Label too. It would be nice if AdventureWorks had a Color
table with colors and IDs for each, but it doesn’t. The colors are stored in the
Product table, so you need to retrieve them from there. That’s not hard, but it
requires a little SQL trick to make it look good. Configure sdsColorSource to
retrieve just the Color column from the Product table—no need for WHERE
clauses this time. Remember to add the [Production] schema in Source view.

2. Click ddlColor and select Choose Data Source. In the dialog, select
sdsColorSource for the data source, and select Color for both the field to display
and the value. Click OK.

3. If you were to run your application right now, you’d see that ddlColor would
have a long list of colors—many repeated, and many blank. This actually works
fine, but it doesn’t look very good. What you want is to only retrieve colors that
aren’t already in the list. The easiest way to do that is to use an extra bit of SQL
code called DISTINCT. DISTINCT does exactly what it sounds like—it makes sure
that each data item in the list is unique, by discarding the repeats. To make this
work, switch to source view and find this line, which contains the Select state-
ment for sdsColorSource:

SelectCommand="SELECT [Color] FROM [Production].[Product]"></asp:SqlDataSource>

Just add DISTINCT, like this:
SelectCommand="SELECT DISTINCT [Color] FROM _
[Production].[Product]"></asp:SqlDataSource>

4. Now test your application. You should see a much shorter list in ddlColor, and
each item is unique.

Now you have all the tools the user needs to make a selection, so all you need to do
is give them a way to see the results.

1. Add one more SqlDataSource (call it sdsProducts), and a GridView (gvProducts).

2. Configure the Data source to retrieve the ProductID, Name, ProductNumber, and
Color from the Product table.

452 | Appendix C: Answers to Quizzes and Exercises

3. Click the WHERE button. This time, you want two WHERE clauses: one for the
subcategory, and one for the color. (The category doesn’t matter; it’s only
there to populate the subcategory list.) For the first WHERE, set the Column to
ProductSubcategoryID, the Operation to =, and the Source to Control. On the
right, set the Control ID to ddlSubcategory. Click Add.

4. For the second WHERE clause, set the Column to Color, the Operation to =, and
the Source to Control. On the right, set the Control ID to ddlColor. The dialog
should look like Figure C-6.

5. Click Add to add the second WHERE, and OK to return to the Wizard. Click
Next and Finish in the Wizard; then switch to Source view to add the
[Production] schema.

6. Back in Design view, click gvProducts, and enable sorting and paging. Apply a
nice format if you like.

You don’t want to set either ddlSubcategory or ddlColor to Auto-postback, because
you want users to be able to make both choices before the GridView does anything.
The drop-down lists have AutoPostBack set to false by default, so that’s no problem.
You need something to trigger the postback, though, so add a Button, and change its
text to “Submit.” Buttons are set to post back whenever they’re clicked, and that’s all
you want it to do, so you don’t even need an event handler for this button. Easy!

Figure C-6. Adding the WHERE clauses for the GridView. Notice that the subcategory WHERE
clause is already added.

Chapter 4: Saving and Retrieving Data | 453

Run your application and try it out. Try selecting black gloves or yellow jerseys to see
the full effect. Note that if there are no items in the color you’ve chosen, the GridView
will not appear.

Well done! You’ve taken a long and confusing product list, and with just a handful
of drop-down lists, you’ve made it much friendlier and easier for readers to navigate.
With the selection tools you learned about in this chapter, you can imagine that you
could enable the user to select items from the GridView to see product details, or add
it to a shopping cart, but that’s a subject for later on.

Example C-17 shows the markup file for Exercise 4-4.

Example C-17. The markup file for Exercise 4-4

<%@ Page Language="VB" AutoEventWireup="true" CodeFile="Default.aspx.vb"
Inherits="_Default" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head runat="server">
 <title>Exercise 4-4</title>
</head>
<body>
 <form id="form1" runat="server">
 <asp:ScriptManager ID="ScriptManager1" runat="server" />
 <div>
 <asp:SqlDataSource ID="sdsCategorySource" runat="server"
 ConnectionString=
 "<%$ ConnectionStrings:AdventureWorksConnectionString %>"
 SelectCommand="SELECT [Name], [ProductCategoryID]
 FROM [Production].[ProductCategory]">
 </asp:SqlDataSource>
 <asp:SqlDataSource ID="sdsSubcategorySource" runat="server"
 ConnectionString=
 "<%$ ConnectionStrings:AdventureWorksConnectionString %>"
 SelectCommand="SELECT [ProductSubcategoryID], [Name]
 FROM [Production].[ProductSubcategory]
 WHERE ([ProductCategoryID] = @ProductCategoryID)">
 <SelectParameters>
 <asp:ControlParameter ControlID="ddlCategory"
 Name="ProductCategoryID" PropertyName="SelectedValue"
 Type="Int32" />
 </SelectParameters>
 </asp:SqlDataSource>
 <asp:SqlDataSource ID="sdsColorSource" runat="server"
 ConnectionString=
 "<%$ ConnectionStrings:AdventureWorksConnectionString %>"
 SelectCommand="SELECT DISTINCT [Color]
 FROM [Production].[Product]">
 </asp:SqlDataSource>

454 | Appendix C: Answers to Quizzes and Exercises

 <asp:SqlDataSource ID="sdsProducts" runat="server"
 ConnectionString=
 "<%$ ConnectionStrings:AdventureWorksConnectionString %>"
 SelectCommand="SELECT [ProductID], [Name], [ProductNumber],
 [Color] FROM [Prioduction].[Product]
 WHERE ([ProductSubcategoryID] = @ProductSubcategoryID)
 AND ([Color] = @Color))">
 <SelectParameters>
 <asp:ControlParameter ControlID="ddlSubcategory"
 Name="ProductSubcategoryID" PropertyName="SelectedValue"
 Type="Int32" />
 <asp:ControlParameter ControlID="ddlColor" Name="Color"
 PropertyName="SelectedValue"
 Type="String" />
 </SelectParameters>
 </asp:SqlDataSource>

 <asp:Label ID="lblCategory" runat="server"
 Font-Bold="True" Text="Category: "></asp:Label>
 <asp:DropDownList ID="ddlCategory" runat="server"
 DataSourceID="sdsCategorySource" DataTextField="Name"
 DataValueField="ProductCategoryID" AutoPostBack="True">
 </asp:DropDownList>
 <asp:Label ID="lblSubcategory" runat="server" Font-Bold="True"
 Text="Subcategory:"></asp:Label>
 <asp:DropDownList ID="ddlSubcategory" runat="server"
 DataSourceID="sdsSubcategorySource" DataTextField="Name"
 DataValueField="ProductSubcategoryID">
 </asp:DropDownList>
 <asp:Label ID="lblColor" runat="server" Font-Bold="True"
 Text="Color:"></asp:Label>
 <asp:DropDownList ID="ddlColor" runat="server"
 DataSourceID="sdsColorSource" DataTextField="Color"
 DataValueField="Color">
 </asp:DropDownList>
 <asp:Button ID="btnSubmit" runat="server" Text="Submit" />

 </div>

 <asp:GridView ID="gvProducts" runat="server" AllowPaging="True"
 AllowSorting="True"
 CellPadding="4" DataSourceID="sdsProducts" ForeColor="#333333"
 GridLines="None" AutoGenerateColumns="False" DataKeyNames="ProductID">
 <FooterStyle BackColor="#507CD1" Font-Bold="True" ForeColor="White" />
 <RowStyle BackColor="#EFF3FB" />
 <EditRowStyle BackColor="#2461BF" />
 <SelectedRowStyle BackColor="#D1DDF1" Font-Bold="True"
 ForeColor="#333333" />
 <PagerStyle BackColor="#2461BF" ForeColor="White"
 HorizontalAlign="Center" />
 <HeaderStyle BackColor="#507CD1" Font-Bold="True" ForeColor="White" />
 <AlternatingRowStyle BackColor="White" />

Example C-17. The markup file for Exercise 4-4 (continued)

Chapter 5: Validation | 455

Chapter 5: Validation

Answers to Quiz Questions
1. You need validation because users make mistakes. The wrong input could result

in misplaced orders, inaccurate records, and can even corrupt your database.
Validation gets the user to fix those errors before they get anywhere near your
data.

2. Set the button’s CausesValidation property to false.

3. The RequiredFieldValidator—in the case of a radio button list, you’ve already
defined the choices for the user, so you don’t need to validate the form or type of
input; you just need to make sure that they chose something.

4. When the Display property is set to Static, the validator takes up a fixed
amount of room, even if it’s not displaying a message. When it’s set to Dynamic,
the control is only rendered when there’s a validation error, which can cause
other controls to move around.

5. Use a RequiredFieldValidator, and set the InitialValue property to “Choose a
payment method.”

6. It enables you to place all the validation error messages in one spot on the page,
instead of next to each control.

7. Use a CompareValidator. You can compare the quantity the user ordered with the
amount of inventory in your database, and make sure that the amount the user
wants is equal to or less than the amount you have.

8. Use a NoSnoreValidation control, to make sure none of the guests snore too
loudly. Just kidding. Use a RangeValidator. Set the MinimumValue to 2, and the
MaximumValue to 5.

 <Columns>
 <asp:BoundField DataField="ProductID" HeaderText="ProductID"
 InsertVisible="False"
 ReadOnly="True" SortExpression="ProductID" />
 <asp:BoundField DataField="Name" HeaderText="Name"
 SortExpression="Name" />
 <asp:BoundField DataField="ProductNumber"
 HeaderText="ProductNumber" SortExpression="ProductNumber" />
 <asp:BoundField DataField="Color" HeaderText="Color"
 SortExpression="Color" />
 </Columns>
 </asp:GridView>
 </form>
</body>
</html>

Example C-17. The markup file for Exercise 4-4 (continued)

456 | Appendix C: Answers to Quizzes and Exercises

9. Use a RegularExpressionValidator. The Regular Expression Editor has an option
that provides you with a regular expression to validate the form of an email
address.

10. You’d need to use a CustomValidator. The RangeValidator can only check values
in a single range. With a CustomValidator, though, you could write code to check
that the age the user entered either falls between 6 and 12, or is greater than 65.

Answers to Exercises
Exercise 5-1. This one is fairly simple to start out with. Just make a table with five
labels, five textboxes, and five Required Field Validators. We specified that you
didn’t need to worry about the format of the data, so a RequiredFieldvalidator is all
you need right now. Just make sure you have the validators targeting the correct con-
trols, add some appropriate error messages, and you’re done. Example C-18 shows
the markup file for this exercise.

Example C-18. The markup file for Exercise 5-1

<%@ Page Language="VB" AutoEventWireup="false" CodeFile="Default.aspx.vb"
Inherits="_Default" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" >
<head runat="server">
 <title>Untitled Page</title>
</head>
<body>
 <form id="form1" runat="server">
 <div>
 <H1>Phone Survey Participation Form</H1>
 <p>
 <table>
 <tr>
 <td align="right">
 <asp:Label ID="lblName" runat="server" Text="Name:">
 </asp:Label></td>
 <td style="width: 100px">
 <asp:TextBox ID="txtName" runat="server">
 </asp:TextBox></td>
 <td style="width: 100px">
 <asp:RequiredFieldValidator ID="reqFieldName"
 runat="server"
 ControlToValidate="txtName">
 Please enter your name</asp:RequiredFieldValidator>
 </td>
 </tr>
 <tr>
 <td align="right">

Chapter 5: Validation | 457

 <asp:Label ID="lblAddress" runat="server"
 Text="Street address:"></asp:Label></td>
 <td style="width: 100px">
 <asp:TextBox ID="txtAddress" runat="server">
 </asp:TextBox></td>
 <td style="width: 100px">
 <asp:RequiredFieldValidator ID="reqFieldAddress"
 runat="server"
 ControlToValidate="txtAddress">
 Please enter the street address
 </asp:RequiredFieldValidator></td>
 </tr>
 <tr>
 <td align="right">
 <asp:Label ID="lblCity" runat="server" Text="City:">
 </asp:Label></td>
 <td style="width: 100px">
 <asp:TextBox ID="txtCity" runat="server">
 </asp:TextBox></td>
 <td style="width: 100px">
 <asp:RequiredFieldValidator ID="reqFieldCity"
 runat="server"
 ControlToValidate="txtCity">
 Please enter the city
 </asp:RequiredFieldValidator></td>
 </tr>
 <tr>
 <td align="right">
 <asp:Label ID="lblState" runat="server" Text="State:">
 </asp:Label></td>
 <td style="width: 100px">
 <asp:TextBox ID="txtState" runat="server">
 </asp:TextBox></td>
 <td style="width: 100px">
 <asp:RequiredFieldValidator ID="reqFieldState"
 runat="server"
 ControlToValidate="txtState">
 Please enter the state
 </asp:RequiredFieldValidator></td>
 </tr>
 <tr>
 <td align="right">
 <asp:Label ID="lblZip" runat="server"
 Text="ZIP code"></asp:Label></td>
 <td style="width: 100px">
 <asp:TextBox ID="txtZip" runat="server"></asp:TextBox></td>
 <td style="width: 100px">
 <asp:RequiredFieldValidator ID="reqFieldZip" runat="server"
 ControlToValidate="txtZip">
 Please enter the Zip code
 </asp:RequiredFieldValidator></td>
 </tr>

Example C-18. The markup file for Exercise 5-1 (continued)

458 | Appendix C: Answers to Quizzes and Exercises

Exercise 5-2. This exercise also isn’t too difficult. You saw how to add a
ValidationSummary control earlier in the chapter. All you need to do is change the
text of the other validator controls to ErrorMessage properties, and the messages will
display automatically in the summary control.

To check the user’s age, you need two controls: A RequiredFieldValidator, to make
sure the user can’t leave the field blank, and a CompareValidator to make sure that
the user is over 18 (or that they say they are, anyway). The RequiredFieldValidator is
the same as the ones in Exercise 5-1. For the CompareValidator, be sure to set the
ControlToValidate property to txtAge (or whatever you called the age TextBox), set
the Type property to Integer, set the Operator property to GreaterThanEqual, and set
the ValueToCompare property to 18.

You want to make sure that the user enters a date when they’d like you to call, and
that the date is sometime in July. Sounds like a job for the RangeValidator. You need
to make sure the user enters a date, so add a RequiredFieldValidator that validates
txtCallDate first. Then add a RangeValidator that also validates txtCallDate. Make
sure you set the Type to Date, or you’ll get unexpected results. Set the MaximumValue to
07/31/2007, and the MinimumValue to 07/01/2007. Add appropriate text and error
messages, and you’re done. Try it out, and you’ll see that the user can only enter
dates in July. Example C-19 shows the markup file for this exercise.

 <tr>
 <td></td>
 <td align="center">
 <asp:Button ID="btnSubmit" runat="server" Text="Submit" />
 </td>
 <td></td>
 </tr>
 </table>
 </p>
 </div>
 </form>
</body>
</html>

Example C-19. The markup file for Exercise 5-2

<%@ Page Language="VB" AutoEventWireup="false" CodeFile="Default.aspx.vb"
Inherits="_Default" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" >
<head runat="server">
 <title>Untitled Page</title>
</head>

Example C-18. The markup file for Exercise 5-1 (continued)

Chapter 5: Validation | 459

<body>
 <form id="form1" runat="server">
 <div>
 <H1>Phone Survey Participation Form</H1>
 <p>
 <table>
 <tr>
 <td align="right">
 <asp:Label ID="lblName" runat="server" Text="Name:">
 </asp:Label></td>
 <td style="width: 100px">
 <asp:TextBox ID="txtName" runat="server">
 </asp:TextBox></td>
 <td style="width: 100px">
 <asp:RequiredFieldValidator ID="reqFieldName"
 runat="server" ErrorMessage="Please enter your name"
 ControlToValidate="txtName">*
 </asp:RequiredFieldValidator></td>
 </tr>
 <tr>
 <td align="right">
 <asp:Label ID="lblAddress" runat="server"
 Text="Street address:"></asp:Label></td>
 <td style="width: 100px">
 <asp:TextBox ID="txtAddress" runat="server">
 </asp:TextBox></td>
 <td style="width: 100px">
 <asp:RequiredFieldValidator ID="reqFieldAddress"
 runat="server"
 ErrorMessage="Please enter the street address"
 ControlToValidate="txtAddress">*
 </asp:RequiredFieldValidator></td>
 </tr>
 <tr>
 <td align="right">
 <asp:Label ID="lblCity" runat="server" Text="City:">
 </asp:Label></td>
 <td style="width: 100px">
 <asp:TextBox ID="txtCity" runat="server">
 </asp:TextBox></td>
 <td style="width: 100px">
 <asp:RequiredFieldValidator ID="reqFieldCity"
 runat="server" ErrorMessage="Please enter the city"
 ControlToValidate="txtCity">*
 </asp:RequiredFieldValidator></td>
 </tr>
 <tr>
 <td align="right">
 <asp:Label ID="lblState" runat="server" Text="State:">
 </asp:Label></td>

Example C-19. The markup file for Exercise 5-2 (continued)

460 | Appendix C: Answers to Quizzes and Exercises

 <td style="width: 100px">
 <asp:TextBox ID="txtState" runat="server">
 </asp:TextBox></td>
 <td style="width: 100px">
 <asp:RequiredFieldValidator ID="reqFieldState"
 runat="server" ErrorMessage="Please enter the state"
 ControlToValidate="txtState">*
 </asp:RequiredFieldValidator></td>
 </tr>
 <tr>
 <td align="right">
 <asp:Label ID="lblZip" runat="server" Text="ZIP code">
 </asp:Label></td>
 <td style="width: 100px">
 <asp:TextBox ID="txtZip" runat="server"></asp:TextBox></td>
 <td style="width: 100px">
 <asp:RequiredFieldValidator ID="reqFieldZip" runat="server"
 ErrorMessage="Please enter the Zip code"
 ControlToValidate="txtZip">*
 </asp:RequiredFieldValidator></td>
 </tr>
 <tr>
 <td align="right">
 <asp:Label ID="lblAge" runat="server" Text="Age:">
 </asp:Label></td>
 <td>
 <asp:TextBox ID="txtAge" runat="server"></asp:TextBox></td>
 <td>
 <asp:CompareValidator ID="compareValidatorAge"
 runat="server"
 ErrorMessage="You must be over 18 to participate"
 ControlToValidate="txtAge" Operator="GreaterThanEqual"
 Type="Integer" ValueToCompare="18">*
 </asp:CompareValidator>
 <asp:RequiredFieldValidator ID="reqFieldAge" runat="server"
 ControlToValidate="txtAge"
 ErrorMessage="Please enter your age.">*
 </asp:RequiredFieldValidator></td>
 </tr>
 <tr>
 <td align="right">
 <asp:Label ID="lblCallDate" runat="server"
 Text="Enter a date for us to call you, in July,
 2007 (format m/d/yyyy):"
 Width="150px"></asp:Label></td>
 <td>
 <asp:TextBox ID="txtCallDate" runat="server">
 </asp:TextBox></td>
 <td>
 <asp:RequiredFieldValidator ID="reqFieldCallDate"
 runat="server" ControlToValidate="txtCallDate"
 ErrorMessage="Please enter a date for your call">*
 </asp:RequiredFieldValidator>

Example C-19. The markup file for Exercise 5-2 (continued)

Chapter 5: Validation | 461

Exercise 5-3. This time around, you need three validators on a single TextBox. The
RequiredFieldValidator and RangeValidator work the same as they do in Exercise
5-2—you can even copy-and-paste the appropriate markup in Source view to make
the new row. However, be sure to change the ControlToValidate properties of both
validators to txtFollowup (or whatever you call the follow-up text box).

Now you need to add a third validator—this time, a CompareValidator. You’re not
comparing to a constant value, though, like you were with the age text box. This
time, you want to make sure that the date in txtFollowup is later than the date in
txtCallDate, which means you want the value in txtFollowup to be greater. Add your
CompareValidator, set its ControlToValidate property to txtFollowup, and set the
ControlToCompare property to txtCallDate. Be sure not to get the two properties
backwards, or you’ll get unexpected results. Now set the Operator property to
GreaterThan, and make sure to set the Type to Date. Add the appropriate text and
error messages, and try it out. You’ll see that the follow-up date still has to be in July,
but also that it must be later than the date of the original call. (If you want to be
extra helpful, you can change the RangeValidator for txtCallDate so that the latest
date is July 30, which leaves time for a follow-up on July 31.) Example C-20 shows
the markup file for Exercise 5-3.

 <asp:RangeValidator ID="rangeValCallDate" runat="server"
 ControlToValidate="txtCallDate"
 ErrorMessage="The date must be between 7/1/2007
 and 7/31/2007"
 MaximumValue="07/31/2007"
 MinimumValue="07/01/2007" Type="Date">*
 </asp:RangeValidator></td>
 </tr>
 <tr>
 <td colspan=3>
 <asp:ValidationSummary ID="valSummary" runat="server"
 HeaderText="The following errors were found:" />
 </td>
 </tr>
 <tr>
 <td></td>
 <td align="center"style="width: 100px">
 <asp:Button ID="btnSubmit" runat="server"
 Text="Submit" /></td>
 <td></td>
 </tr>
 </table>
 </p>
 </div>
 </form>
</body>
</html>

Example C-19. The markup file for Exercise 5-2 (continued)

462 | Appendix C: Answers to Quizzes and Exercises

Example C-20. The markup file for Exercise 5-3

<%@ Page Language="VB" AutoEventWireup="false" CodeFile="Default.aspx.vb"
Inherits="_Default" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" >
<head runat="server">
 <title>Untitled Page</title>
</head>
<body>
 <form id="form1" runat="server">
 <div>
 <H1>Phone Survey Participation Form</H1>
 <p>
 <table>
 <tr>
 <td align="right">
 <asp:Label ID="lblName" runat="server" Text="Name:">
 </asp:Label></td>
 <td style="width: 100px">
 <asp:TextBox ID="txtName" runat="server">
 </asp:TextBox></td>
 <td style="width: 100px">
 <asp:RequiredFieldValidator ID="reqFieldName"
 runat="server" ErrorMessage="Please enter your name"
 ControlToValidate="txtName">*
 </asp:RequiredFieldValidator></td>
 </tr>
 <tr>
 <td align="right">
 <asp:Label ID="lblAddress" runat="server"
 Text="Street address:">
 </asp:Label></td>
 <td style="width: 100px">
 <asp:TextBox ID="txtAddress" runat="server">
 </asp:TextBox></td>
 <td style="width: 100px">
 <asp:RequiredFieldValidator ID="reqFieldAddress"
 runat="server"
 ErrorMessage="Please enter the street address"
 ControlToValidate="txtAddress">*
 </asp:RequiredFieldValidator></td>
 </tr>
 <tr>
 <td align="right">
 <asp:Label ID="lblCity" runat="server" Text="City:">
 </asp:Label></td>
 <td style="width: 100px">
 <asp:TextBox ID="txtCity" runat="server">
 </asp:TextBox></td>

Chapter 5: Validation | 463

 <td style="width: 100px">
 <asp:RequiredFieldValidator ID="reqFieldCity"
 runat="server" ErrorMessage="Please enter the city"
 ControlToValidate="txtCity">*
 </asp:RequiredFieldValidator></td>
 </tr>
 <tr>
 <td align="right">
 <asp:Label ID="lblState" runat="server" Text="State:">
 </asp:Label></td>
 <td style="width: 100px">
 <asp:TextBox ID="txtState" runat="server">
 </asp:TextBox></td>
 <td style="width: 100px">
 <asp:RequiredFieldValidator ID="reqFieldState"
 runat="server" ErrorMessage="Please enter the state"
 ControlToValidate="txtState">*
 </asp:RequiredFieldValidator></td>
 </tr>
 <tr>
 <td align="right">
 <asp:Label ID="lblZip" runat="server" Text="ZIP code">
 </asp:Label></td>
 <td style="width: 100px">
 <asp:TextBox ID="txtZip" runat="server"></asp:TextBox></td>
 <td style="width: 100px">
 <asp:RequiredFieldValidator ID="reqFieldZip" runat="server"
 ErrorMessage="Please enter the Zip code"
 ControlToValidate="txtZip">*
 </asp:RequiredFieldValidator></td>
 </tr>
 <tr>
 <td align="right">
 <asp:Label ID="lblAge" runat="server" Text="Age:">
 </asp:Label></td>
 <td>
 <asp:TextBox ID="txtAge" runat="server"></asp:TextBox></td>
 <td>
 <asp:CompareValidator ID="compareValidatorAge"
 runat="server"
 ErrorMessage="You must be over 18 to participate"
 ControlToValidate="txtAge" Operator="GreaterThanEqual"
 Type="Integer" ValueToCompare="18">*
 </asp:CompareValidator>
 <asp:RequiredFieldValidator ID="reqFieldAge" runat="server"
 ControlToValidate="txtAge"
 ErrorMessage="Please enter your age.">*
 </asp:RequiredFieldValidator></td>
 </tr>

Example C-20. The markup file for Exercise 5-3 (continued)

464 | Appendix C: Answers to Quizzes and Exercises

 <tr>
 <td align="right">
 <asp:Label ID="lblCallDate" runat="server"
 Text="Enter a date for us to call you, in
 July, 2007 (format m/d/yyyy):"
 Width="150px"></asp:Label></td>
 <td>
 <asp:TextBox ID="txtCallDate" runat="server">
 </asp:TextBox></td>
 <td>
 <asp:RequiredFieldValidator ID="reqFieldCallDate"
 runat="server" ControlToValidate="txtCallDate"
 ErrorMessage="Please enter a date for your call">*
 </asp:RequiredFieldValidator>
 <asp:RangeValidator ID="rangeValCallDate" runat="server"
 ControlToValidate="txtCallDate"
 ErrorMessage="The date must be between 7/1/2007
 and 7/31/2007"
 MaximumValue="07/31/2007"
 MinimumValue="07/01/2007" Type="Date">*
 </asp:RangeValidator></td>
 </tr>
 <tr>
 <td align="right">
 <asp:Label ID="lblFollowup" runat="server"
 Text="Enter a date for us to make a follow-up call,
 in July, 2007 (format m/d/yyyy):"
 Width="150px"></asp:Label></td>
 <td>
 <asp:TextBox ID="txtFollowup" runat="server">
 </asp:TextBox></td>
 <td>
 <asp:RequiredFieldValidator ID="reqFieldFollowup"
 runat="server" ControlToValidate="txtFollowup"
 ErrorMessage="Please enter a date for your
 follow-up call">*
 </asp:RequiredFieldValidator>
 <asp:RangeValidator ID="rangeValFollowup" runat="server"
 ControlToValidate="txtFollowup"
 ErrorMessage="The date must be between 7/1/2007 and
 7/31/2007"
 MaximumValue="07/31/2007"
 MinimumValue="07/01/2007" Type="Date">*
 </asp:RangeValidator>
 <asp:CompareValidator ID="compareValFollowup"
 runat="server" ControlToCompare="txtCallDate"
 ControlToValidate="txtFollowup"
 ErrorMessage="Please select a date after your
 first call."
 Operator="GreaterThan" Type="Date">*
 </asp:CompareValidator></td>
 </tr>

Example C-20. The markup file for Exercise 5-3 (continued)

Chapter 5: Validation | 465

Exercise 5-4. Adding another couple rows to the table is old hat for you by now, and
so is adding the RequiredFieldValidator controls for each of the new text boxes. To
check the format for the phone number and email address, though, you’ll need to
use a RegularExpressionValidator for each. This isn’t too tricky: for the phone num-
ber, drag a RegularExpressionValidator next to the RequiredFieldValidator. Set its
ControlToValidate to txtPhone (or whatever you called the text box), click the
ValidationExpression property, and then click the ellipsis button to open the Regu-
lar Expression Editor. Select “U.S. phone number” from the list (or whatever coun-
try you’d like to validate for), and click OK. Add text and error message properties,
and it’s good to go. The RegularExpressionValidator for the email field works the
same way, except that the ControlToValidate is txtEmail (or whatever you called that
text box), and you select “Internet e-mail address” in the Regular Expression Editor.
Try it out, and you’ll see that the page works. You can try a few different variations
on phone numbers, and the most common ones will be accepted. Example C-21
shows the markup for Exercise 5-4.

 <tr>
 <td colspan=3>
 <asp:ValidationSummary ID="valSummary" runat="server"
 HeaderText="The following errors were found:" />
 </td>
 </tr>
 <tr>
 <td></td>
 <td align="center"style="width: 100px">
 <asp:Button ID="btnSubmit" runat="server"
 Text="Submit" /></td>
 <td></td>
 </tr>
 </table>
 </p>
 </div>
 </form>
</body>
</html>

Example C-21. The markup file for Exercise 5-4

<%@ Page Language="VB" AutoEventWireup="false" CodeFile="Default.aspx.vb"
Inherits="_Default" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" >
<head runat="server">
 <title>Untitled Page</title>
</head>

Example C-20. The markup file for Exercise 5-3 (continued)

466 | Appendix C: Answers to Quizzes and Exercises

<body>
 <form id="form1" runat="server">
 <div>
 <H1>Phone Survey Participation Form</H1>
 <p>
 <table>
 <tr>
 <td align="right">
 <asp:Label ID="lblName" runat="server" Text="Name:">
 </asp:Label></td>
 <td style="width: 100px">
 <asp:TextBox ID="txtName" runat="server">
 </asp:TextBox></td>
 <td style="width: 100px">
 <asp:RequiredFieldValidator ID="reqFieldName"
 runat="server" ErrorMessage="Please enter your name"
 ControlToValidate="txtName">*
 </asp:RequiredFieldValidator></td>
 </tr>
 <tr>
 <td align="right">
 <asp:Label ID="lblAddress" runat="server"
 Text="Street address:"></asp:Label></td>
 <td style="width: 100px">
 <asp:TextBox ID="txtAddress" runat="server">
 </asp:TextBox></td>
 <td style="width: 100px">
 <asp:RequiredFieldValidator ID="reqFieldAddress"
 runat="server"
 ErrorMessage="Please enter the street address"
 ControlToValidate="txtAddress">*
 </asp:RequiredFieldValidator></td>
 </tr>
 <tr>
 <td align="right">
 <asp:Label ID="lblCity" runat="server" Text="City:">
 </asp:Label></td>
 <td style="width: 100px">
 <asp:TextBox ID="txtCity" runat="server">
 </asp:TextBox></td>
 <td style="width: 100px">
 <asp:RequiredFieldValidator ID="reqFieldCity"
 runat="server" ErrorMessage="Please enter the city"
 ControlToValidate="txtCity">*
 </asp:RequiredFieldValidator></td>
 </tr>
 <tr>
 <td align="right">
 <asp:Label ID="lblState" runat="server" Text="State:">
 </asp:Label></td>

Example C-21. The markup file for Exercise 5-4 (continued)

Chapter 5: Validation | 467

 <td style="width: 100px">
 <asp:TextBox ID="txtState" runat="server">
 </asp:TextBox></td>
 <td style="width: 100px">
 <asp:RequiredFieldValidator ID="reqFieldState"
 runat="server" ErrorMessage="Please enter the state"
 ControlToValidate="txtState">*
 </asp:RequiredFieldValidator></td>
 </tr>
 <tr>
 <td align="right">
 <asp:Label ID="lblZip" runat="server"
 Text="ZIP code"></asp:Label></td>
 <td style="width: 100px">
 <asp:TextBox ID="txtZip" runat="server"></asp:TextBox></td>
 <td style="width: 100px">
 <asp:RequiredFieldValidator ID="reqFieldZip" runat="server"
 ErrorMessage="Please enter the Zip code"
 ControlToValidate="txtZip">*
 </asp:RequiredFieldValidator></td>
 </tr>
 <tr>
 <td align="right">
 <asp:Label ID="lblAge" runat="server" Text="Age:">
 </asp:Label></td>
 <td>
 <asp:TextBox ID="txtAge" runat="server"></asp:TextBox></td>
 <td>
 <asp:CompareValidator ID="compareValidatorAge"
 runat="server"
 ErrorMessage="You must be over 18 to participate"
 ControlToValidate="txtAge" Operator="GreaterThanEqual"
 Type="Integer" ValueToCompare="18">*
 </asp:CompareValidator>
 <asp:RequiredFieldValidator ID="reqFieldAge" runat="server"
 ControlToValidate="txtAge"
 ErrorMessage="Please enter your age.">*
 </asp:RequiredFieldValidator></td>
 </tr>
 <tr>
 <td align="right">
 <asp:Label ID="lblPhone" runat="server" Text="Phone:">
 </asp:Label></td>
 <td>
 <asp:TextBox ID="txtPhone" runat="server">
 </asp:TextBox></td>
 <td>
 <asp:RequiredFieldValidator ID="reqFieldPhone"
 runat="server" ControlToValidate="txtPhone"
 ErrorMessage="Please enter your phone number.">*
 </asp:RequiredFieldValidator>

Example C-21. The markup file for Exercise 5-4 (continued)

468 | Appendix C: Answers to Quizzes and Exercises

 <asp:RegularExpressionValidator ID="regExpValPhone"
 runat="server" ControlToValidate="txtPhone"
 ErrorMessage="Please enter a valid phone number"
 ValidationExpression="((\(\d{3}\) ?)|(\d{3}-))?\d{3}-\d{4}">*
 </asp:RegularExpressionValidator></td>
 </tr>
 <tr>
 <td align="right">
 <asp:Label ID="lblEmail" runat="server"
 Text="E-mail address:"></asp:Label></td>
 <td>
 <asp:TextBox ID="txtEmail" runat="server">
 </asp:TextBox></td>
 <td>
 <asp:RequiredFieldValidator ID="reqFieldEmail"
 runat="server" ControlToValidate="txtEmail"
 ErrorMessage="Please enter your e-mail address">*
 </asp:RequiredFieldValidator>
 <asp:RegularExpressionValidator ID="regExpValEmail"
 runat="server" ControlToValidate="txtEmail"
 ErrorMessage="Please enter a valid e-mail address"
 ValidationExpression=
 "\w+([-+.']\w+)*@\w+([-.]\w+)*\.\w+([-.]\w+)*">*
 </asp:RegularExpressionValidator></td>
 </tr>
 <tr>
 <td align="right">
 <asp:Label ID="lblCallDate" runat="server"
 Text="Enter a date for us to call you, in July,
 2007 (format m/d/yyyy):"
 Width="150px"></asp:Label></td>
 <td>
 <asp:TextBox ID="txtCallDate" runat="server">
 </asp:TextBox></td>
 <td>
 <asp:RequiredFieldValidator ID="reqFieldCallDate"
 runat="server" ControlToValidate="txtCallDate"
 ErrorMessage="Please enter a date for your call">*
 </asp:RequiredFieldValidator>
 <asp:RangeValidator ID="rangeValCallDate" runat="server"
 ControlToValidate="txtCallDate"
 ErrorMessage="The date must be between 7/1/2007
 and 7/31/2007"
 MaximumValue="07/31/2007" MinimumValue="07/01/2007"
 Type="Date">*
 </asp:RangeValidator></td>
 </tr>
 <tr>
 <td align="right">
 <asp:Label ID="lblFollowup" runat="server"
 Text="Enter a date for us to make a follow-up call,
 in July, 2007 (format m/d/yyyy):"
 Width="150px"></asp:Label></td>

Example C-21. The markup file for Exercise 5-4 (continued)

Chapter 5: Validation | 469

 <td>
 <asp:TextBox ID="txtFollowup" runat="server">
 </asp:TextBox></td>
 <td>
 <asp:RequiredFieldValidator ID="reqFieldFollowup"
 runat="server" ControlToValidate="txtFollowup"
 ErrorMessage=
 "Please enter a date for your follow-up call">*
 </asp:RequiredFieldValidator>
 <asp:RangeValidator ID="rangeValFollowup" runat="server"
 ControlToValidate="txtFollowup"
 ErrorMessage=
 "The date must be between 7/1/2007 and 7/31/2007"
 MaximumValue="07/31/2007"
 MinimumValue="07/01/2007" Type="Date">*
 </asp:RangeValidator>
 <asp:CompareValidator ID="compareValFollowup"
 runat="server" ControlToCompare="txtCallDate"
 ControlToValidate="txtFollowup" ErrorMessage=
 "Please select a date after your first call."
 Operator="GreaterThan" Type="Date">*
 </asp:CompareValidator></td>
 </tr>
 <tr>
 <td colspan=3>
 <asp:ValidationSummary ID="valSummary" runat="server"
 HeaderText="The following errors were found:" />
 </td>
 </tr>
 <tr>
 <td></td>
 <td align="center"style="width: 100px">
 <asp:Button ID="btnSubmit" runat="server"
 Text="Submit" /></td>
 <td></td>
 </tr>
 </table>
 </p>
 </div>
 </form>
</body>
</html>

Example C-21. The markup file for Exercise 5-4 (continued)

470 | Appendix C: Answers to Quizzes and Exercises

Chapter 6: Style Sheets, Master Pages, and Navigation

Answers to Quiz Questions
1. The best way to apply styles on your page is to use an external style sheet. You

can use inline or document-level styles, but these are error-prone and difficult to
maintain.

2. The style for the specific paragraph applies. Style rules are always applied from
least to most specific.

3. You use the @import command to apply a style sheet to your page, and it must be
placed in the <head> element. If you place it anywhere else, the style sheet will be
ignored.

4. A master page acts as a shell inside of which the content of your individual pages
is displayed. This allows you to have a consistent look to all the pages on your
site.

5. There’s no limit to the number of nested master pages you can apply to a single
content page, but if you use too many, your content will be difficult to read.

6. The child content page needs a reference to the class of the master page, con-
tained in a @MasterType directive, immediately following the @Page directive for
the child page.

7. You can use the Response.Redirect method.

8. You need to add a site map file, which is an XML file. You can use Website ➝

Add New Item to add a new site map with an automatically generated skeleton,
but you need to add the content of the XML file yourself.

9. You place a SiteMapDataSource control on the page to enable the navigation con-
trols. In the case of a TreeView or Menu control, you use the Smart Tag to point
the control to the SiteMapDataSource.

10. You don’t have to do anything. The SiteMapPath control automatically finds the
SiteMapDataSource control on the page and uses it.

Answers to Exercises
Exercise 6-1. There are a few different ways to create the pages shown in Exercise
6-1; here’s one of them. Create a new web site called Exercise 6-1. Add a new master
page called AjaxTravel.master, and be sure to put the code in a separate file. Rename
the content placeholder something like cphAjaxMaster. Add an <h1> with the appro-
priate message, and a footer with the copyright message. Check it out in Design view
to make sure it looks the way you want.

Chapter 6: Style Sheets, Master Pages, and Navigation | 471

Use Website ➝ Add New Item to add a new Web Form called Home.aspx to your
site, and select AjaxMaster.master as its master page. Add a with two items
that each consist of a link: One that reads “Sun and surf packages” with an href of
Sun.aspx, and one that reads “Snow and ski packages” with an href of Snow.aspx.

Add a new master page to the site; call it SunMaster.master. As in Example 6-7,
remove everything except the Master directive, and add the following code to the
Master directive:

MasterPageFile="AjaxTravel.master"

Next, add a Content section with a ContentPlaceHolderID attribute of cphAjaxMaster.
Add some content for the header and footer, and be sure to include another
ContentPlaceHolder called cphSunContent.

Create another new master page called SnowMaster.master, and set it up in the same
way as SunMaster.master.

Add a new Web Form, and set its master page to be SunHome.aspx. Create another
 with links to the Bermuda and Maui pages.

Add a new Web Form, and set its master page to be SnowHome.aspx. Create another
 with links to the St. Moritz and Vail pages.

Create content pages for Bermuda and Maui with simple sample text, both of which
use SunMaster.master as their master page.

Create content pages for St. Moritz and Vail with simple sample text, both of which
use SnowMaster.master as their master page.

Now you’ve got a fully functional web site that changes its content depending on
where the user wants to go, but maintains brand identity. If this were a real site, of
course, you’d use style sheets to jazz up the content, add your company logo, and
such. And of course, you’d also have real content on the destination pages. You can
imagine that you’d probably have a link in the footers to your honeymoon and ski
vacation packages that would take the user to the appropriate pages.

Exercise 6-2. Copy Exercise 6-1 to a new web site, Exercise 6-2. Open AjaxTravel.
master, and add some text underneath the <h1>. Type “Welcome,” and then drag a
Label onto the page after the text. Name the label lblName, and change its Text prop-
erty to “Guest.” Then add an exclamation point. If you run the site now, you’ll see
that each page says “Welcome, Guest!”

You need AjaxTravel.master to implement a public property to display the label, so
open AjaxTravel.master.vb, and enter the following code:

Private lbl As Label
 Public Property MessageLabel() As Label
 Get
 Return lblName
 End Get

472 | Appendix C: Answers to Quizzes and Exercises

 Set(ByVal value As Label)
 lbl = value
 End Set
 End Property

Now, on the Home.aspx page, below the , add some text saying “Enter your
name:”. Then add a Textbox control (txtName), and a Submit button. The page needs
to know about the AjaxTravel page class, so that it can make changes to the master
page. Add the following line of code to Home.aspx, just after the Page directive:

<%@ MasterType TypeName="AjaxTravel" %>

Now you need to wire up the Submit button so that the text in txtName gets copied to
the label on the master page. Double-click the Submit button, and when the event
handler opens, add the following code:

Me.Master.MessageLabel.Text = txtName.Text

Try it out. You’ll see the control on the home page where you’ll be able to enter your
name, and it should be transferred to the master page. Unfortunately, if you navigate
to any other page, the greeting goes back to being “Hello, Guest!” To save that infor-
mation, you’ll need to use session state, which you’ll see in Chapter 7.

Exercise 6-3. We won’t use the user greeting for this web site, so copy Exercise 6-1
to a new web site called Exercise 6-3. The first thing you need to do is add a Site
Map, so select Website ➝ Add New Item, select Site Map, and accept the default
name. The skeleton of web.sitemap is created for you automatically, but you need to
fill in the nodes. The results should look like this:

<?xml version="1.0" encoding="utf-8" ?>
<siteMap xmlns="http://schemas.microsoft.com/AspNet/SiteMap-File-1.0" >
 <siteMapNode url="~/Home.aspx" title="Home" description="Home page">
 <siteMapNode url="~/SunHome.aspx" title="Sun" description="Sunny
 destinations">
 <siteMapNode url="~/Bermuda.aspx" title="Bermuda" description="Bermuda" />
 <siteMapNode url="~/Maui.aspx" title="Maui" description="Maui" />
 </siteMapNode>
 <siteMapNode url="~/SnowHome.aspx" title="Snow" description="Snow
 destinations">
 <siteMapNode url="~/StMoritz.aspx" title="St. Moritz" description="St.
 Moritz" />
 <siteMapNode url="~/Vail.aspx" title="Vail" description="Vail, Colorado" />
 </siteMapNode>
 </siteMapNode>
</siteMap>

Next, open up AjaxTravel.master, and add a SiteMapDataSource control to the master
page. It doesn’t matter where you put it, and the data source will find Web.sitemap
automatically.

Now add two radio buttons, rbTree and rbMenu, with Text properties of “Tree View”
and “Menu.” Be sure to set the GroupName property of each control to the same value,
such as grpNavView. Now add two panels below the radio button list, pnlTree and

Chapter 7: State and Life Cycle | 473

pnlMenu. Set the Visible property of each panel to False. Add a TreeView control to
pnlTree, and a Menu control to pnlMenu. Set the data source of the TreeView and menu
controls to point to the SiteMapDataSource you added earlier.

Now you need to set the event handler for the radio buttons. Double-click rbTree to
be taken to the CheckChanged event. You want pnlTree to be visible when this button
is checked, and pnlMenu to be invisible, so add this code to the event handler:

 pnlTree.Visible = rbTree.Checked
 pnlMenu.Visible = rbMenu.Checked

Create an event handler for pnlMenu’s CheckChanged event, and add the same code.

Now run the site. You should be able to select the TreeView or Menu navigation con-
trol on each page. You may need to rearrange the content of your pages so that the
menus will fit. Unfortunately, you can’t retain the user’s choice from page to page,
but again, you’ll see how to do that in Chapter 7.

Exercise 6-4. This last exercise is very simple. Simply open AjaxTravel.master, and
drag a SiteMapPath control onto the page. The SiteMapPath will automatically find
the SiteMapDataSource and implement the bread crumbs for you.

Chapter 7: State and Life Cycle

Answers to Quiz Questions
1. A session is the period of time in which a single user interacts with an applica-

tion, no matter how many individual pages he or she visits.

2. The state of a page refers to the current values of all controls on the page, includ-
ing any changes made by the user.

3. Add the Trace="True" attribute to the Page directive to see the page Trace,
including the stages of the page life cycle, and the control hierarchy.

4. The postback mode is determined in the Start phase of the life cycle.

5. The Page_Load event is the most common event to handle if you want to take
actions during the Load phase.

6. ASP.NET manages Control state, View state, Session state, and Application
state. You cannot affect the management of the Control state.

7. The EnableViewState="false" attribute disables view state for more complex
controls. Simpler controls, such as text boxes, retain their state no matter what.

8. Use the state bag to store the value of a counter that increments each time the
page is loaded. If you navigate to a separate page, the counter will reset, but not
if you click the browser’s Refresh button.

9. Save the user’s name in session state.

10. Use the syntax Session("username") = <user's name>.

474 | Appendix C: Answers to Quizzes and Exercises

Answers to Exercises
Exercise 7-1. The trick to this exercise isn’t the code—it’s where you put it. You
want to evaluate the IsPostBack attribute, and take action based on its value, so the
best place to do that is in the Page_Load event. Just a simple bit of code in the Page_
Load event handler does what you want:

Protected Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 If Not IsPostBack Then
 lblPostBack.Text = "You're seeing this page for the first time!"
 Else
 lblPostBack.Text = "Welcome back to the page."
 End If
End Sub

Exercise 7-2. This exercise isn’t all that different from Exercise 7-1, except that you
need to use the state bag. The button and the label aren’t anything special. The
key to this exercise is in the code-behind file, specifically the event handler for the
Page_Load event.

The first thing you need to do is create an empty string to hold the message that
you’ll put in the label:

Dim message As String = ""

If this is the first time the page has been loaded, you add a message to the string say-
ing that. You use an If statement that checks whether the page is a postback, just as
in Exercise 7-1. Notice that you use DateTime.Now to insert the current time, and then
add a line break just to make things look nice:

If Not IsPostBack Then
 message += "Page first accessed at " + DateTime.Now + ".
"
End If

Then you assign the string to the Text property of the label:

lblMessage.Text = message

That’s all easy enough, but you need that string for the next time the page is posted,
so you need to store it in the state bag. You simply create a new item in the dictio-
nary, give it a name, and then assign the string to it:

ViewState("message") = message

Now you need to account for when the page is posted back, so you have to go back
up and add an Else clause to your If statement. This time, you want to retrieve the
previous message first, so you get it back from the state bag, and use CType to con-
vert it to a string. Then you can add the rest of the message just as you did in the first
half of the If:

Else
 message = CType(ViewState("message"), String) + "Page posted back at " _
 + DateTime.Now + ".
"

Chapter 7: State and Life Cycle | 475

The statements to assign the message to the label and then store the message back in
the state bag happen outside the If, so there’s no need to repeat them here.

The entire event handler is shown in Example C-22.

As a bonus, try adding EnableViewState = "False" to the Page directive, and then run
the application again. Instead of appending each new line to the string, every post-
back will overwrite the existing string.

Exercise 7-3. For this exercise, you need to use the Session dictionary instead of the
state bag. Start by adding the two new buttons to Default.aspx, and give each of
them a handler that uses Response.Redirect to point to SecondPage.aspx and
ThirdPage.aspx.

You’ll need to make some changes to the code-behind file of Default.aspx. First,
replace the ViewState methods with Session. In addition, you have to make a change
to the first half of the If statement:

 If Not IsPostBack Then
 message += "Page first accessed at " + DateTime.Now + ".
"

If you navigate to another page, and then return to the Home page, the message will
be defined again as a blank string. If that happens, you need to retrieve
Session("message") from the session state, even the first time the page loads, when
Session("message") will be empty:

If Not IsPostBack Then
 message = CType(Session("message"), String) + _
 "Home page first accessed at " + DateTime.Now + ".
"

The entirety of the code-behind for Default.aspx should now look like
Example C-23.

Example C-22. The event handler for the Page_Load event in Exercise 7-3

Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs) _
Handles Me.Load

 Dim message As String = ""
 If Not IsPostBack Then
 message += "Page first accessed at " + DateTime.Now + ".
"
 Else
 message = CType(ViewState("message"), String) + "Page posted back at " _
 + DateTime.Now + ".
"

 End If
 lblMessage.Text = message
 ViewState("message") = message

End Sub

476 | Appendix C: Answers to Quizzes and Exercises

Now create SecondPage.aspx and ThirdPage.aspx. These two pages need the same
controls as Default.aspx, and the same code-behinds, but be sure to change the mes-
sages and the Response.Redirect targets accordingly.

This time, if you add EnableViewState = "False" to the Page directive, the application
doesn’t change, because the string is stored in state instead. If you disable session
state and try to run the application, you’ll get an error.

Chapter 8: Errors, Exceptions, and Bugs, Oh My!

Answers to Quiz Questions
1. Add Trace="true" to the @Page directive of the page you want to trace.

2. The only difference is that Trace.Warn writes to the trace log in red.

3. Trace.Write and Trace.Warn can both take a category string, a message string,
and an exception object.

Example C-23. The code-behind file for Default.aspx in Exercise 7-3

Partial Class _Default
 Inherits System.Web.UI.Page

 Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)_
 Handles Me.Load

 Dim message As String = ""
 If Not IsPostBack Then
 message = CType(Session("message"), String) + _
 "Home page first accessed at " + DateTime.Now + ".
"
 Else
 message = CType(Session("message"), String) + _
 "Home page posted back at " + DateTime.Now + ".
"
 End If
 lblMessage.Text = message
 Session("message") = message

 End Sub

 Protected Sub btnPage2_Click(ByVal sender As Object, ByVal e As _
 System.EventArgs) Handles btnPage2.Click
 Response.Redirect("SecondPage.aspx")
 End Sub

 Protected Sub btnPage3_Click(ByVal sender As Object, ByVal e As _
 System.EventArgs) Handles btnPage3.Click
 Response.Redirect("ThirdPage.aspx")
 End Sub
End Class

Chapter 8: Errors, Exceptions, and Bugs, Oh My! | 477

4. Click in the left column of any code file to set a breakpoint. A red dot will
appear on the line where you set the breakpoint.

5. Simply hover the mouse over the variable, and a pop-up will appear, showing its
value.

6. When the application is stopped at a breakpoint, you can use the Immediate
window to change the value of a variable.

7. The Locals window shows the variables in the current context, and their values.

8. Syntax errors are errors in the code that violate the rules of the language. The IDE
can catch most of these for you. Logic errors occur when the syntax of code is
correct, but the code does not provide the results that the programmer expected.

9. In the web.config file, you need to create a <customErrors> section, and set the
mode attribute to On.

10. Add the ErrorPage attribute to the @Page directive, where you can specify the
error page that will apply only to errors generated by the current page.

Answers to Exercises
Exercise 8-1. After you’ve downloaded the file, open Default.aspx, and add the
attribute Trace="true" to the @Page directive. You’ve now enabled tracing on this file.
Open Default.aspx.vb, where you’ll find the event handler for the drop-down list.
Insert a line of code similar to the following:

 Trace.Warn("In event handler.")

Now run the application. You’ll see the trace information immediately, but you
won’t see your trace message until you select an item from the drop-down list. Once
you do, the message will show up in the trace.

Exercise 8-2. In debugging, there are always many different ways to identify a prob-
lem. You could try to trace to solve this problem, but it probably won’t tell you
much. The best thing to do is to set a breakpoint somewhere, and have a look at the
local variables. The problem is with the text being written to the label, so placing a
breakpoint where the text is assigned would be a good idea. Open the Default.aspx.
vb file, and place a breakpoint on this line:

lblProduct.Text = ddlProduct.SelectedItem.Value + "
" + description

Now run the application. Nothing happens until you make a selection in the drop-
down list, which triggers the event handler. Still nothing happens in the application,
because the breakpoint halted execution before the text was written to the label.

In the Locals window, you should now see the value of several variables. You can see
the value of description there, but that’s not the problem. If you hover over
ddlProduct.SelectedItem.Value, you’ll see that the value is “ox” in this case, which
isn’t what you want. You might know just from looking at it that SelectedItem.Value

478 | Appendix C: Answers to Quizzes and Exercises

isn’t what you want to write to the label, but if you didn’t, there’s still more informa-
tion available. In the Locals window, you’ll see that the value of “sender” is {System.
Web.UI.WebControls.DropDownList}. The problem is with the drop-down list, so that
looks promising. If you click the plus sign to expand that item, you’ll see another
heading at first, but if you click that plus sign, you’ll see a list of properties for the
DropDownList. There’s a lot of them, but if you scroll down to “SelectedItem,” you’ll
see that you can expand that too. Once you do, you’ll see that SelectedItem.Value is
set to “ox,” which you don’t want, but right above it, SelectedValue.Text is set to
“Oxford shirt,” which is what you want. Therefore, if you change this:

lblProduct.Text = ddlProduct.SelectedItem.Value + "
" + description

to this:

lblProduct.Text = ddlProduct.SelectedItem.Text + "
" + description

you’ll resolve the problem.

It’s not obvious that you’d find the answer to the problem three levels deep in the
Locals window. A large part of debugging is experience, along with knowing where
to look. The important part is learning to put the breakpoints at the right spots to
give you the best leads you can get.

Exercise 8-3. One of the most frustrating troubleshooting situations is trying to work
out why your application is not doing something. In this case, you can see that the
checkbox is checked, but the panel isn’t appearing as expected. Something must be
wrong in the event handler. Open Default.aspx.vb, and place a breakpoint at the
beginning of the event handler:

Protected Sub ddlProduct_SelectedIndexChanged(ByVal sender _
As Object, ByVal e As System.EventArgs) Handles ddlProduct.SelectedIndexChanged

Run the application. When it stops at the breakpoint, there isn’t much to see in the
Locals window. If you click the plus sign next to the Me item in the Locals window,
you’ll see a very lengthy list of everything related to the page, including all the con-
trols on it. You need to narrow down the information some. Open the Watch win-
dow next to the Locals window (you may need to drag the Watch tab to some other
part of the UI to see it). Scroll down in the Locals window until you find pnlProduct.
Click the plus sign next to it to see the panel’s properties. Drag the Visible property
into the Watch window, so you can watch it all by itself.

Now that you know what you’re watching, you need the application to continue.
Use the Step Into button on the Debugging toolbar, or press F11 to step through the
event handler line-by-line. When you reach the end of the event handler, you’ll see
that the panel’s Visible property is still False—nothing ever changed it. That means
that a line is missing from the event handler; specifically, this one:

pnlProduct.Visible = cbProduct.Checked

Without that line, the panel stays at its initial value of Visible = False. Once you
insert that line, the application runs properly.

Chapter 9: Security and Personalization | 479

Exercise 8-4. The first thing you need to do is modify the Web.config file to indicate
that you’ll be using a custom error page. Insert the following code between the
<system.web> tags:

<customErrors mode="On" defaultRedirect="Error.htm">
 <error statusCode="404" redirect="Error404.htm"/>

This code creates a default error page, Error.htm, and a page specifically for 404
errors, Error404.htm.

The next step is creating error file. Select Website ➝ Add New Item, and select an
HTML file, naming it Error404.htm. Open the file and add some HTML similar to
the following:

<html>
<head>
 <title>Bad Link Error</title>
</head>
<body>
 <h1>Error</h1>
 We're sorry, the page you're looking for does not exist. Please notify
 the webmaster.
 Click here to return to the product page.
</body>
</html>

Return to Default.aspx, run the application, and click the link. You’ll be taken to
your custom error page. You can even use the link to get back to the product page,
which probably won’t make the user very happy, so it would be a good idea to get
the customer assistance page created right away, or delegate it to a subordinate.

Chapter 9: Security and Personalization

Answer to Quiz Questions
1. You can create users by hand, using the WAT, or you can allow users to create

accounts programmatically with the CreateUserWizard control.

2. Forms-based security grants privileges to users based on credentials, such as
username and password, which are gathered from the user via a web page. With
Windows authentication, user privileges are based on their Windows login.

3. User information is stored in a database named ASPNETDB.MDF within the
App_Data directory of your site.

4. You need to provide a CreateUserWizard control so that users can specify their
own account information.

5. You can add users to roles by using the WAT.

6. Use the User.IsInRole property to test whether a user is a member of a role
before granting access to a page.

480 | Appendix C: Answers to Quizzes and Exercises

7. You need to add a line to web.config, setting profile enabled to true. You also
need to add a <properties> section within the profile section, and use the <add>
property to specify the names of the properties you want to retain.

8. Use an anonymous profile by setting <anonymousIdentification enabled="true">
in the web.config file.

9. Style sheet themes are functionally equivalent to CSS style sheets, and can be
overridden by the page or by the control. Customization themes are applied last,
and therefore cannot be overridden.

10. You define the settings for a skin in a .skin file, which resides inside a folder
named after the theme, which in turn is located with the App_Themes folder of
your site.

Answers to Exercises
Exercise 9-1. Create your new web site. Start off by deleting Default.aspx. Add a new
page Home.aspx, set it as the start page, give it a title and an <h1>, and then add a
LoginStatus control. Add a LoginView control, and set the Logged In and Logged Out
templates to the appropriate messages. Add a LoginName control to the Logged In
template to greet the user by name.

If you’re not going to use the WAT to create any users, you need to add the follow-
ing line to your web.config file, in the <system.web> section:

<authentication mode="Forms" />

Add a new page to your site, login.aspx. Give it a title and an <h1>, and then drag a
Login control onto the page. Give it whatever formatting you like.

At the moment, though, the only way to create a new user is with the WAT. Add a
page where users can create their own user accounts. Create a new page,
CreateAccount.aspx. Give it a title and an <h1>, and then add a CreateUserWizard con-
trol to the page. Set the ContinueDestination property to Home.aspx to take users
back to the front of the site when they’ve created their accounts. Go back to the Login.
aspx page, and add a Hyperlink control with a NavigateUrl property of CreateAccount.
aspx, so that users can create an account if they don’t already have one.

Run your site and create a handful of users to populate your database. Be sure to
write down the passwords because you’ll need them later.

Exercise 9-2. Create the content pages first, fishforum.aspx and siteadmin.aspx. The
next thing you’ll need to do is define roles for your existing users. You can only do
that from the WAT, so start up the WAT (Website ➝ ASP.NET Configuration), select
Security, click “Enable Roles,” click “Create or Manage Roles,” and add two roles for
“Moderator” and “User.” Then go back, click Manage Users, and add some of your
users to the “Moderator” group, and all of them to the “User” group. Close the WAT.

Chapter 9: Security and Personalization | 481

Open siteadmin.aspx.vb. You want to restrict access to this page to just users who
have the Moderator role. Create an event handler for the Page Load event as usual,
and add this code:

 If User.IsInRole("Moderator") = False Then
 Response.Redirect("Home.aspx")
 End If

This allows Moderators to view the page, but plain users will be sent back to the
home page.

Open siteadmin.aspx and add some text indicating that this is a placeholder page for
content to come. Add a hyperlink and set the NavigateUrl property to Home.aspx.

Now open fishforum.aspx.vb. You want only people in the User role to be able to
access this page, so create a Page Load event for this page and add the following
code:

 If User.IsInRole("User") = False Then
 Response.Redirect("Home.aspx")
 End If

Users who are in the “User” role will be able to view this page, but anyone else will
be sent back to the home page.

Open fishforum.aspx and also add some text indicating that this is a placeholder
page for content to come. Add a hyperlink and set the NavigateUrl property to
Home.aspx.

Open up Home.aspx and add two hyperlinks—one that points to fishforum.aspx,
and one that points to siteadmin.aspx.

Test out your site. You’ll find that your users in the Moderator role can visit both
content pages, but users in the User role can only visit the Fish Forum. Users who
aren’t logged in, or don’t have a role, are returned to the home page. Of course, in
practice, you’d redirect users to a “No permissions” page, but returning them to the
home page is fine for now.

Exercise 9-3. If you’re going to use profiles, the first thing you need to do is make a
modification to the web.config file. Open web.config and add the following code to
enable profiles and store the four data elements you want to save:

 <profile enabled="true" defaultProvider="AspNetSqlProfileProvider">
 <properties>
 <add name="userName" />
 <add name="numFish" />
 <add name="fishType" />
 <add name="favFish" />
 </properties>
 </profile>

482 | Appendix C: Answers to Quizzes and Exercises

Next, add a new page, ProfilePage.aspx, to the site. Use a table for layout, and enter
the standard controls as shown in the figure. Be sure to add the Save button at the
bottom of the table.

Double-click the Save button to create a handler for the Click event. You need to
record the string values from the form into the Profile object.

 Protected Sub btnSave_Click(ByVal sender As Object, ByVal e
 As System.EventArgs) Handles btnSave.Click
 If Profile.IsAnonymous = False Then
 Profile.userName = Me.txtUserName.Text
 Profile.numFish = Me.txtNumFish.Text
 If rbTropical.Checked = True Then
 Profile.fishType = "Tropical"
 Else
 Profile.fishType = "Freshwater"
 End If
 Profile.favFish = ddlFavFish.SelectedItem.Text
 End If
 Response.Redirect("Home.aspx")
 End Sub

You have to write a little bit of code to extract the text values from the radio button
pair, and the drop-down list, and then enter them into the Profile attributes.

Notice that this handler redirects to Home.aspx when it’s done. The next thing you
need to do is make some modifications to Home.aspx so that users can see their pro-
files. First, switch the LoginView control to the logged-in template, and add a hyper-
link directing users to the Profile page.

Now add a panel, pnlProfileInfo, so that users can see the current contents of their
profile. The markup for this panel and its contents should look like this:

<asp:Panel ID="pnlProfileInfo" runat="server" Height="50px" Visible="False"
Width="250px">
 <table>
 <tr align=left>
 <td>User Name:</td>
 <td style="width: 100px">
 <asp:Label ID="lblName" runat="server"></asp:Label>
 </td>
 </tr>
 <tr align=left>
 <td>Number of fish:</td>
 <td style="width: 100px">
 <asp:Label ID="lblNumFish" runat="server"></asp:Label></td>
 </tr>
 <tr align=left>
 <td>Tropical or Fresh?</td>
 <td style="width: 100px">
 <asp:Label ID="lblFishType" runat="server"></asp:Label></td>
 </tr>

Chapter 9: Security and Personalization | 483

 <tr align=left>
 <td>Favorite Fish</td>
 <td style="width: 100px">
 <asp:Label ID="lblFavFish" runat="server"></asp:Label></td>
 </tr>
 </table>
</asp:Panel>

Now you just have to write an event handler to populate the labels in the table in the
panel. Add the following code to the Page_Load event handler:

Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs) _
 Handles Me.Load
 If Not IsPostBack And _
 Profile.UserName IsNot Nothing And _
 Profile.IsAnonymous = False Then
 Me.pnlProfileInfo.Visible = True
 Me.lblName.Text = Profile.userName
 Me.lblNumFish.Text = Profile.numFish
 Me.lblFishType.Text = Profile.fishType
 Me.lblFavFish.Text = Profile.favFish
 Else
 Me.pnlProfileInfo.Visible = False
 End If

End Sub

Exercise 9-4. Start by creating the App_Themes folder in Solution Explorer. Now add
the two theme folders for Angelfish and Clownfish. Create the Button.skin and Label.
skin files in the Angelfish folder. Here’s the markup for the Button.skin file in the
Angelfish theme:

<asp:Button runat="server"
 ForeColor="Yellow"
 BackColor="Black"
 Font-Size="Large" />

The other skin files are similar, but with different colors, of course.

Next, you have to enable themes in the properties element of the profile section in
web.config:

<add name="Theme" />

Now open up Home.aspx.vb and add the overrides StyleSheetTheme() method as
follows:

Public Overrides Property StyleSheetTheme() As String
 Get
 If Profile.IsAnonymous = False And Profile.Theme IsNot Nothing Then
 Return Profile.Theme
 Else
 Return "Angelfish"
 End If
 End Get

484 | Appendix C: Answers to Quizzes and Exercises

 Set(ByVal value As String)
 Profile.Theme = value
 End Set
End Property

When the user logs in, the theme stored in the user’s profile will be loaded. The
anonymous users will get the Angelfish theme.

Next, you need to provide a way for users to choose their theme. Add two buttons to
Home.aspx—one labeled Clownfish Theme and the other Angelfish Theme, with IDs
of btnClownfish and btnAngelfish, respectively. Because you don’t want these
buttons to be visible unless the user is logged in, add the following two lines to the
Page_Load method of Home.aspx.vb:

btnAngelFish.Visible = Not Profile.IsAnonymous
btnClownfish.Visible = Not Profile.IsAnonymous

Create an event handler to use for the Click event for both buttons. Call it Theme_Click
and add the highlighted code from the following snippet:

Protected Sub Theme_Click(ByVal sender As Object, ByVal e As System.EventArgs) _
 Handles btnClownfish.Click, btnAngelFish.Click
 Dim btn As Button = CType(sender, Button)
 If btn.Text = "Clownfish Theme" Then
 Profile.Theme = "Clownfish"
 Else
 Profile.Theme = "Angelfish"
 End If

 Server.Transfer(Request.FilePath)
End Sub

If the button that raises the Click event has the text “Clownfish Theme,” the Clown-
fish theme is set. Otherwise, the Angelfish theme is set.

Finally, create an event handler for the PreInit event and add the highlighted code
from the following snippet:

Protected Sub Page_PreInit(ByVal sender As Object, ByVal e As System.EventArgs) _
 Handles Me.PreInit
 If Profile.IsAnonymous = False Then
 Page.Theme = Profile.Theme
 End If
End Sub

Now when you run the app, the default theme on the home page will be Angelfish,
and if you log in and change the theme for user, that theme will be remembered the
next time the user logs in.

485

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

Index

Symbols
+= operator, 237
> (greater-than symbol), 213
@import command, 180

A
access

databases, security, 288
files, 4
modifiers, 193
restricting, 298–304
site map nodes

programmatically, 209–212
Accordion control, 72
Add Connection dialog box, 100, 287, 404
Add New Item dialog box, 73
Add ORDER BY Clause dialog box, 126
Add WHERE Clause dialog box, 125, 127
adding

AJAX, 363
asynchronous postbacks, 29–31
bread crumbs, 212
content pages, 184–187
controls, 8–13

with Item Editor, 42
custom error pages, 377
Hyperlink controls, 199
images, 51–52
items

to lists, 42
in Source view, 43

Label controls to master pages, 192
LinkButton controls, 53

links, 52
master pages, 183
navigation tools, 351–353
PopupControlExtender, 76–82
profiles, 308
schema names, 106
ScriptManager controls, 67–71
site maps, 203–212
skins, 325
styles, 340–343
tables, 48
themes, 324, 327
trace logs, 256–259
UpdatePanel controls, 69
validation controls, 143

CompareValidator, 154–159
CustomValidator, 162–164
RangeValidator, 159
RegularExpressionValidator, 160–162
RequiredFieldValidator, 144–151
ValidationSummary, 152

watermarks, 72–76
Web Forms, 186

Advanced SQL Generation Options dialog
box, 114

AdventureWorks database
applying, 406
getting data from, 97–116

AJAX
adding, 363
Control Toolkit, 22, 72–87
controls, 22
installing, 411
overview of, 66

486 | Index

AJAX-Enabled Web Site template, 24
AlwaysVisibleControlExtender control, 72
AnimationExtender control, 72
anonymous personalization, 314–321
AnonymousTemplate view, 291
applications

building
applying controls, 31–53
overview of controls, 19–31
overview of web pages, 17

clients, 65
Control Toolkit, 72–87
databases, getting data from, 97–116
debugging, 250–254, 259

breakpoints, 261–266
Debug toolbar, 260
stepping through code, 266
windows, 268–271

Hello World, 2
adding controls, 8–13
creating, 6–8

installing
AJAX, 411
hardware/software requirements, 401
Visual Studio 2005, 407–410
VWD, 402–407

sessions, 222
state, 228, 244
validation, 142

CompareValidator, 154–159
controls, 143
CustomValidator, 162–164
RangeValidator, 159
RegularExpressionValidator, 160–162
RequiredFieldValidator, 144–151
ValidationSummary, 152

web sites, creating, 2–5
applying

AdventureWorks sample databases, 406
controls, 31–53
DataSource controls, 99–104
GridView control, 107–113
master pages, 182–184, 343–346
named skins, 330
nested master pages, 187–191
styles, 170–180

architecture, World Wide Web, 221
arguments, 28
arrays, 235

ASP.NET
AJAX (see AJAX)
server controls, 19

.aspx files, 17
asynchronous postbacks, 23–31

adding, 29–31
attributes

EnableViewState, 228
ErrorMessage, 152
IntialValue, 147
Operator, 156
Trace, 223
ValueToCompare, 156

authentication
forms-based security, 285
roles, testing, 300

Auto Format options, TreeView control, 207
auto-generated control source

code, 109–113
AutoPostBack property, 46, 69
AWProductData site source code, 128–136

B
behavior, breakpoints, 262
binding data controls, 97
_blank value, 53
blocks, Try, 212
Boolean variables, 52
bread crumbs, 200–203

adding, 212
Breakpoint Condition dialog box, 264
Breakpoint Hit Count dialog box, 265
breakpoints, debugging, 261–266
Browse button, 5
browsers

session state, 238
URLs, entering, 221

btnSave_Click event handler, 311
building applications

controls
applying, 31–53
overview of, 19–31

GridView controls, 99
web pages, overview of, 17

buttons, 196–200
adding, 9
Browse, 5
Condition, 263
Hit Button, 264
Partial Update, 31

Index | 487

C
Call Stack window, 271
calling

event handlers, 11
methods, 232

Cart page, 365–368
source code, 379–381

Cascading Style Sheets (see CSS)
CascadingDropDown control, 72
Case statements, 242
catching errors, 212
CheckBox control, 40, 122
CheckBoxList control, 40, 313
CheckChanged control, 70
Checked property, 123
child pages, creating, 187
classes, 21

CorpMasterPage, 193
StringCollection, 310

clauses
ORDER BY, 126
WHERE, 125

Click event, 11, 12
RequiredFieldValidator control, 148

clients, applications, 65
code

HTTP status, 256
stepping through, 266
(see also source code)

code-behind files, 11, 12, 18, 22
CollapseControlID property, 85
Collapsed property, 85
CollapsedImage property, 86
CollapsedText property, 86
CollapsiblePanelExtender control, 72, 82–87
columns, 38

configuring, 111
commands, @import, 180
CompareValidator control, 144, 154–159
complex data types, 310–315
components, life cycles, 224
Computer Management window, 414
concatenation, 50
Condition button, 263
Configure Data Source Wizard, 102, 113
Configure Select Statement dialog box, 126
Configure Select Statement Wizard, 128

configuring
breakpoints, 261
columns, 111
data sources, 100
debugging, 10, 260
error handling, 273
inline styles, 172
properties, 39
roles, 346–348
SELECT statements, 103
session state, 244
SQL Express, 404
StyleSheetTheme property, 328
themes, 321–331
user accounts, 346–348

Confirm page, 375–378
source code, 382–383

ConfirmButtonExtender control, 72
connecting databases, 101
connection strings, 102

saving, 103
Content control, 363
content pages, adding, 184–187
Control Toolkit, 72–87
control tree, 223, 226
controls, 7

Accordion, 72
adding, 8–13
AJAX, 22
AlwaysVisibleControlExtender, 72
AnimationExtender, 72
applying, 31–53
CascadingDropDown, 72
CheckBox, 122
CheckBoxList, 313
CheckedChaned, 70
CollapsiblePanelExtender, 72, 82–87
CompareValidator, 144, 154–159
ConfirmButtonExtender, 72
Content, 363
CreateUserWizard, 289
custom, 20
CustomValidator, 144, 162–164
data source, 20
Data view, 20
data, binding, 97
DataSource, applying, 99–104
DragPanelExtender, 72

488 | Index

DropDownList, 46
FilteredTextBoxExtender, 72
GridView, 98

applying, 107–113
building, 99
modifying, 119
selecting data from, 123

HoverMenuExtender, 72
HTML, 19
images, 51–52
Item Editor, adding with, 42
Label, adding to master pages, 192
LinkButton, 53
links, 52
login, 21
LoginName, 291
LoginStatus, 291
Menu, replacing TreeView controls

with, 208
moving, 7
MutuallyExclusive-CheckBoxExtender, 72
navigation, 196–213
NoBot, 72
NumericUpDownExtender, 72
overview of, 19–31
PagingBulletedListExtender, 72
Panel, 41

extending, 82–87
PasswordStrength, 72
personalization, 21
PopupControlExtender, 76–82
post backs, 23
RadioButton, 69
RangeValidator, 144, 159
Rating, 72
RegularExpressionValidator, 144,

160–162
ReorderList, 72
RequiredFieldValidator, 144, 144–151
rich, 22
ScriptManager, 24, 67–71
security, 21
selection, 40

lists, 46
server, 18

ASP.NET, 19
.NET AJAX, 19

SiteMapDataSource, 205
SiteMapPath, adding bread crumbs, 212
SqlDataSource, 100
state, 227

application, 244

session, 238–244
view, 228–238

text, displaying, 48–51
TextBox, 39
TextBoxWaterMarkExtender, 72–76
Toolkit, 22
TreeView, 206–209
UpdatePanel, adding, 69
UpdatePanelAnimationExtender, 72
user, 20
validation, 20, 143
ValidationSummary, 152
ValidatorCalloutExtender, 72

conventions, naming, 25
cookies, 238
copying web sites

with the IDE, 419–424
without using the IDE, 418
virtual directories, 413–418

CorpMasterPage class, 193
CorpMasterPage.master file, 184
Create User link (WAT), 284
Create, Retrieve, Update, and Delete

statements (see CRUD statements)
CreateUserWizard control, 289
creating

child pages, 187
Hello World, 6–8
helper methods, 232
HTML tables within panels, 41–45
login pages, 293
master pages, 182–184
style sheets, 73
tables, 36–38
user accounts, 285
web sites, 2–5
welcome pages, 290–292

CRUD (Create, Retrieve, Update, and Delete)
statements, 112

CSS (Cascading Style Sheets), 1, 171
styles, adding, 340–343
tables, 37

CType method, 123
CurrentNode property, 212
custom controls, 20
<customErrors> section, 273
customization themes, 321
customizing

messages, 292
trace logs, 256
TreeView controls, 207

CustomValidator control, 144, 162–164

Index | 489

D
data controls, binding, 97
data source controls, 20
Data view controls, 20
databases

AdventureWorks, 406
connecting, 101
data, getting from, 97–116
security, accessing, 288
updating, 116–128
viewing, 116–128

DataSource controls, applying, 99–104
debugging, 250, 259

applications, 250–254
breakpoints, 261–266
configuring, 10
Debug toolbar, 260
objects, 267
stepping through code, 266
variables, 267
windows, 268–271

Debugging Not Enabled dialog box, 10
declarations, themes, 326
default timeout, 238
Default Web Site Properties dialog box, 415
default.aspx file

AspNetExternalStyles, 179
AWProductData, 128–136
RequiredFieldValidator control, 149

Delete statement, 112–116
deleting breakpoints, 263
design surface, 7
Design view

CollapsiblePanelExtender control, 85
ProfileInfo page, 306
ScriptManager control, 67, 71

dialog boxes
Add Connection, 100, 287, 404
Add New Item, 73
Add ORDER BY Clause, 126
Add WHERE Clause, 125, 127
Advanced SQL Generation Options, 114
Breakpoint Condition, 264
Breakpoint Hit Count, 265
Configure Select Statement, 126
Debugging Not Enabled, 10
Default Web Site Properties, 415
Fields, 111
File Breakpoint, 264
Find, 43
Insert Table, 38

New Web Site, 4, 417
Open Web Site, 421
Options, 418
Select a Master Page, 185
Test Connection Succeeded, 287
When Breakpoint is Hit, 266

dictionaries, 235
Application object, 244
objects, 239

directives
Master, 189
MasterType, 344
Page, 187

adding themes, 327
Trace attribute, 223

page, 18
directories

creating, 4
virtual, 413–418

Disable menu, 263
disabling

breakpoints, 263
roles, 295
session state, 243
view state, 228

displaying
anonymous profiles, 316
Breakpoint windows, 261
databases, 116–128
text, 48–51
values, 268

DisplayStuff() method, 242
<div> element, 178
document-level styles, 173
documents

CSS, 171
master pages, formatting, 180–195
virtual directory, 416

dot notation, 21
dragging controls, 7
DragPanelExtender control, 72
DropDown control, 40
DropDownList control, 46

E
editing, 119

fields, 119
properties, 40
roles, 299
rows, 119

490 | Index

elements
<div>, 178
<head>, 180
master pages, formatting, 180–195
siteMap, 204
<SiteMapNode>, 204
, 178
styles, applying, 170–180

Enable Paging, 108
Enable Sorting, 108
EnablePartialRendering property, 67
EnableViewState attribute, 228
enabling, 346–348

debugging, 259
profiles, 304
roles, 295
skins, 325
themes, 325
tracing, 255

End Class statement, 327
error handling, 250, 271

error pages, 273–277
unhandled errors, 272

error pages, adding custom, 377
ErrorMessage attribute, 152
errors, catching, 212
events, 11, 22

Click, 11, 12
RequiredFieldValidator control, 148

handlers, 28
calling, 11
Page_Load, 26–29

MigrateAnonymous, 320
Page Initialization phase, 224
postbacks, 23
RowDataBound, 120, 361
session, 238

exceptions
throwing, 212
Trace Warn method, 259

ExpandControlID property, 85
ExpandDirection property, 86
ExpandedImage property, 86
ExpandedText property, 87
expressions, viewing, 268
extenders, 72–76
external style sheets, 175–180

F
fields

editing, 119
Location, 4
RequiredFieldValidator control, 145
selecting, 111

Fields dialog box, 111
File Breakpoint dialog box, 264
files

accessing, 4
.aspx, 17
code-behind, 18, 22
directories, creating, 4
solution, 418
tracing, enabling, 255
web.config

configuring debugging, 10
saving connection strings, 103
(see also web.config file), 10

FilteredTextBoxExtender control, 72
Find dialog box, 43
folders, adding themes to web sites, 324
For Each loop, 211
For loops, 253
ForeColor property, 122
formatting

GridView control, 113
master pages, 180–195
styles

applying, 170–180
CSS, 171
document-level styles, 173
external style sheets, 175–180
inline styles, 171–173

themes, 321–331
forms, OrderForm markup, 54–59
forms-based security, 282

access, restricting, 298–304
login pages, creating, 293
roles, 295–298
user accounts, modifying, 289–290
WAT, 283–289
welcome pages, creating, 290–292

functions, Substring(), 122

Index | 491

G
Garrett, Jesse James, 66
global.asax file, custom error pages, 276
Globally Unique Identifier (GUID), 317
glyphs, breakpoints, 265
Gould, Lee, 362
graphical user interfaces (see GUIs)
greater-than symbol (>), 213
GridView control, 98

applying, 107–113
building, 99
data, selecting from, 123
modifying, 119

GUID (Globally Unique Identifier), 317
GUIs (graphical user interfaces), 19

H
handlers, event, 28

calling, 11
Page_Load, 26–29

handling
errors, 250, 271

error pages, 273–277
unhandled errors, 272

events
postbacks, 23
RowDataBound, 120

Hansel and Gretel, 200
hardware requirements, 401
Has changed radio button, 264
<head> element, 180
Hello World, 2

controls, adding, 8–13
creating, 6–8

helper methods, 232
Hit Count button, 264
Home page

source code, 384
Home.aspx file, 346
hosting web sites, 5
HoverMenuExtender control, 72
HTML (HyperText Markup Language), 17

controls, 19
tables, 37

creating within panels, 41–45
HTTP (Hypertext Transfer Protocol)

status codes, 256
web sites, hosting, 5

hyperlinks, 196–200
controls, 52

HyperText Markup Language (see HTML)
Hypertext Transfer Protocol (see HTTP)

I
icons

breakpoints, 265
Debug toolbar, 260

ID property, 46
IDE (Integrated Development

Environment), 2
controls, adding, 8–13
Debug toolbar, 260
Debug windows, 268–271
error handling, 271

error pages, 273–277
unhandled errors, 272

Hello World, creating, 6–8
web sites

copying with the, 419–424
copying without using the, 418
creating, 2–5

If statements, 120, 121
IIS (Internet Information Server), 5
image controls, 51–52
ImageControlID property, 85
Immediate window, 268
initializing arrays, 235
InitialValue attribute, 147
inline styles, 171–173
inner joins, 362
Insert statement, 112–116
Insert Table dialog box, 38
Insert Table Wizard, 48
installing applications

AJAX, 411
hardware/software requirements, 401
Visual Studio 2005, 407–410
VWD, 402–407

instances, 21
Int event, 224
Integrated Development Environment (see

IDE)
IntelliSense properties, searching, 32
interacting with databases, 97–116
interfaces

GUIs, 19
(see also browsers)

492 | Index

Internet Information Server (IIS), 5
intranet web sites, WAT, 283
Is true radio button, 264
IsAnonymous property, 307
Item Editor, adding controls with, 42
items

lists, adding, 42
Source view, adding in, 43

J
joins, 362

K
Kennedy, Bill, 19
keywords

Session, 239
ViewState, 234

Kline, Kevin, 362

L
Label controls, adding to master pages, 192
labels, adding, 9
lblRadioButtonList label, 330
length units, styles, 177
life cycles

trace logs, 256
web pages, 221–227

LinkButton controls, 53
links, controls, 52
ListBox control, 40
ListItem Collection Editor, 42, 239
lists

items, adding, 42
selection controls, 46

literals, 160
Load event, 226
loading web pages, life cycles of, 224
localhost, 298
Locals window, 270
Location field, 4
Location menu, 263
LoggedInTemplate view, 291
login, 348–351

controls, 21
status, testing, 300

login pages
creating, 293
source code, 385

LoginName control, 291
LoginStatus control, 291

logs, trace, 256, 256–259
loops

For, 253
For Each, 211

M
MakeFlag column, 108, 119, 122
ManagersPage.aspx file, 301
managing

skins, 323
state, 227

application, 244
session, 238–244
view, 228–238

themes, 323
user accounts, 285, 299

maps, site, 203–212
markup

AWProductData site, 128–136
CompareValidator control, 155
Home.aspx file, 346
ManagersPage.aspx file, 301
PopupControlExtender control, 81
TextBoxwaterMarkExtender control, 75

Master directive, 189
master pages, 22

applying, 343–346
formatting, 180–195
modifying, 191–195
nested, applying, 187–191
source code, 387

MasterType directive, 344
Me object, 196
membership, testing role-based

authentication, 300
Menu control, 208
menus, 200–203

Disable, 263
Location, 263

messages
customizing, 292
trace logs, sending to, 258

metacharacters, 160
methods, 21, 28

CType, 123
DisplayStuff(), 242
helper, 232
Page_Load, 252
Warn, 256, 259
Write, 256

MigrateAnonymous event handlers, 320

Index | 493

migrating anonymous data, 320
modifiers, access, 193
modifying

breakpoints, 262
GridView controls, 119
master pages, 191–195
profiles, 304
security, 285
user accounts, 289–290

moving controls, 7
Musciano, Chuck, 19
MutuallyExclusive-CheckBoxExtender

control, 72

N
named skins, applying, 330
names

conventions, 25
schema, 105–107

navigating web sites, 196–213, 351–353
nested master pages, applying, 187–191
.NET

AJAX server controls, 19
breakpoints, 261–266

_new value, 53
New Web Site dialog box, 4, 417
newlines, 224
NoBot control, 72
nodes

site maps, 209–212
normal HTML, 18
normal postbacks, 23
normalized data, 362
notation

dot, 21
naming conventions, 25

NumericUpDownExtender control, 72

O
object-oriented languages, 21
objects, 21

Application, 244
debugging, 267
dictionaries, 239
Me, 196
Trace, writing to, 257

Open Web Site dialog box, 421
Operator attribute, 156
operators, +=, 237
Options dialog box, 418
ORDER BY clause, 126

OrderForm markup, 54–59
organizing Properties window, 32
outer joins, 362
overriding StyleSheetTheme property, 328

P
Page directive, 187

themes, adding, 327
Trace attribute, 223

page directives, 18
Page Initialization phase, 224
Page_Load event handler, 26–29
Page_Load method, 252
page-level tracing, 254–256
PageSpecificErrorPage.aspx file, 277
PagingBulletedListExtender control, 72
Panel control, 41

extending, 82–87
panels

HTML tables, creating within, 41–45
wrapping, 71

parameters, 28, 232
passing, 125–128
SQL, 116

_parent value, 53
partial page, asynchronous postbacks, 23
Partial Update button, 31
partial-page updates, 67
passing parameters, 125–128
passwords

strong, 286
(see also security)

PasswordStrength control, 72
performance

AJAX, adding, 363
debugging, 260
view state, disabling, 228

permissions, roles, 295–298
personalization, 226, 304

anonymous, 314–321
controls, 21
profiles, 304–315
security

creating login pages, 293
creating welcome pages, 290–292
forms-based, 282
modifying user accounts, 289–290
restricting access, 298–304
roles, 295–298
WAT, 283–289

themes, 321–331

494 | Index

pinning windows, 8
place, 29
pnlProduct, 359
populating Summary tables, 49
PopupControlExtender control, 76–82
ports, well-known, 298
post backs, 11
postbacks, 22

asynchronous, adding, 29–31
life cycles, 226
types of, 23–31

PreInit event, 224, 329
private properties, 193
processing web pages, 18
Product page

source code, 388–392
Products page, 354–364
Profile property, 311
ProfileInfo page, 306
profiles, 304–315
programming Hello World, 2
properties, 7, 21

AutoPostBack, 69
breakpoints, 262
Checked, 123
CollapseControlID, 85
Collapsed, 85
CollapsedImage, 86
CollapsedText, 86
configuring, 39
CurrentNode, 212
editing, 40
EnablePartialRendering, 67
ExpandControlID, 85
ExpandDirection, 86
ExpandedImage, 86
ExpandedText, 87
ForeColor, 122
ImageControlID, 85
IntelliSense, searching, 32
IsAnonymous, 307
Profile, 311
public and private, 193
RepeatDirection, 240
SelectCommand, 361
SetFocusOnError, 149
StyleSheetTheme, 327
SuppressPostBack, 87
TargetControlID, 87

values, 328
viewing, 268
WatermarkCssClass, 74
WatermarkText, 74

Properties window, organizing, 32
public properties, 193
Purchase page, 368–375

source code, 392–397

Q
queries, SELECT, passing

parameters, 125–128

R
radio buttons, unique IDs, 40
RadioButton controls, 40, 69
RadioButtonList control, 40
RangeValidator control, 144, 159
Rating control, 72
records, migrating anonymous data, 320
RegularExpressionValidator control, 144,

160–162
relationships, 362
Rendering phase, 226
ReorderList control, 72
RepeatDirection property, 240
replacing TreeView controls, 208
RequiredFieldValidator control, 144,

144–151
restricting access, 298–304
rich controls, 22
roles, 295–298

authentication, testing, 300
configuring, 346–348
editing, 299

RowDataBound event, 120, 361
rows, 119
runtime

debugging, 260
master pages, modifying at, 191–195

S
SalesMasterPage.master file, 189
schema names, 105–107
scope, 236
script blocks, 18
ScriptManager control, 24, 67–71
searching properties with IntelliSense, 32

Index | 495

security
controls, 21
databases, accessing, 288
enabling, 346–348
forms-based, 282

creating login pages, 293
creating welcome pages, 290–292
modifying user accounts, 289–290
restricting access, 298–304
roles, 295–298
WAT, 283–289

modifying, 285
personalization, 304

anonymous, 314–321
profiles, 304–315

themes, 321–331
Select a Master Page dialog box, 185
Select Case statement, 242
SELECT statements

configuring, 103
parameters, passing, 125–128

SelectCommand property, 361
selecting data from GridView controls, 123
selection controls, 40

lists, 46
SelectionMode property, 46
_self value, 53
servers

controls, 18
ASP.NET, 19
.NET AJAX, 19

databases, connecting, 102
IIS, 5
web pages, processing, 18

server-side custom validation code, 164
Session keyword, 239
sessions, 222

state, 228, 238–244
SetFocusOnError property, 149
simple data types, 304–309
site maps, 352

adding, 203–212
siteMap element, 204
SiteMapDataSource control, 205
<SiteMapNode> element, 204
SiteMapPath control, adding bread

crumbs, 212
skins, 321–331

named, applying, 330
Smart Tags, 42, 100

software requirements, 401
solution file, 418
source code, 87–92

auto-generated control, 109–113
AWProductData site, 128–136
Cart page, 379–381
Confirm page, 382–383
Home page, 384
Login page, 385
master pages, 387
OrderForm markup, 54–59
Products page, 388–392
Purchase page, 392–397
server-side custom validation, 164
stepping through, 266
web.config file, 397–400
(see also markup)

Source tab, 7
Source view

items, adding in, 43
tables, adding, 48

 element, 178
SQL Express, configuring, 404
SQL parameters, 116
SqlDataSource control, 100
state, 221, 227

application, 244
bag, 234
session, 238–244
view, 228–238

statements
Case, 242
Delete, 112–116
End Class, 327
If, 120
If-Then, 121
Insert, 112–116
SELECT

configuring, 103
passing parameters, 125–128

Select Case, 242
Update, 112–116

status codes, HTTP, 256
stepping through code, 266
StringCollection class, 310
strings, 50

connection, 102
saving, 103

strong passwords, 286

496 | Index

style sheets, 35
creating, 73
external, 175–180
themes, 321
(see also CSS)

styles
adding, 340–343
applying, 170–180
document-level, 173
inline, 171–173
length units, 177

StyleSheetTheme property, 327
Substring() function, 122
Summary table, 48

populating, 49
SuppressPostBack property, 87
synchronous postbacks, 23–31
syntax errors, 271
<system.web> section, debugging

configuration, 260

T
tables

creating, 36–38
data controls, binding, 97
HTML, creating within panels, 41–45
Summary, 48

populating, 49
viewing, 120

tags, Smart Tags, 42
TargetControlID property, 87
templates

AJAX-Enabled Web Site, 24
web sites, creating, 4

Test Connection Succeeded dialog box, 287
testing

for login status, 300
profiles, 307
role-based authentication, 300

text
displaying, 48–51
life cycle of pages, 224
watermarks, adding, 72–76

TextBox control, 39
TextBoxWaterMarkExtender control, 72–76
themes, 321–331
throwing exceptions, 212
timeout, default, 238

tool tips, 41
toolbars, Debug, 260
Toolbox, viewing, 7
Toolkit (see Control Toolkit)
tools

characteristics of, 2
debugging, 250, 259

applications, 250–254
breakpoints, 261–266
Debug toolbar, 260
stepping through code, 266
windows, 268–271

error handling, 250, 271
error pages, 273–277
unhandled errors, 272

navigation, 351–353
tracing, 250, 253

inserting trace logs, 256–259
page-level, 254–256

WAT, 283–289
ToolTip property, 46
_top value, 53
Trace attribute, 223
trace logs, 256

inserting, 256–259
Trace object, writing to, 257
tracing, 250, 253

inserting trace logs, 256–259
page-level, 254–256

TreeView control, 206–209
Try block, 212
types

of joins, 362
of postbacks, 23–31
of state, 227

U
unhandled errors, 272
Uniform Resource Locator (see URL)
Unload event, 226
Update statement, 112–116
UpdatePanel control, 31

adding, 69
UpdatePanelAnimationExtender control, 72
updating

databases, 116–128
partial-page updates, 67

URL (Uniform Resource Locator), 221

Index | 497

user accounts
configuring, 346–348
managing, 299
modifying, 289–290

user controls, 20
user records, migrating anonymous data

to, 320
users, creating, 285

V
validation, 142

controls, 20, 143
CompareValidator, 154–159
CustomValidator, 162–164
RangeValidator, 159
RegularExpressionValidator, 160–162
RequiredFieldValidator, 144–151
ValidationSummary, 152

forms-based security, 282
creating login pages, 293
creating welcome pages, 290–292
modifying user accounts, 289–290
restricting access, 298–304
roles, 295–298
WAT, 283–289

Validation phase, 226
ValidationSummary control, 152
ValidatorCalloutExtender control, 72
values

_blank, 53
_new, 53
_parent, 53
properties, 328
_self, 53
_top, 53
viewing, 268

ValueToCompare attribute, 156
variables, 50

Boolean, 52
debugging, 267
state, 227

application, 244
session, 238–244
view, 228–238

viewing, 268
view state, 228–238
viewing

anonymous profiles, 316
Breakpoint windows, 261

databases, 116–128
tables, 120
text, 48–51
Toolbox, 7
values, 268

views
AnonymousTemplate, 291
Data, controls, 20
Design

CollapsiblePanelExtender control, 85
ProfileInfo page, 306
ScriptManager control, 67, 71

LoggedInTemplate, 291
Source

adding items, 43
adding tables, 48

ViewState keyword, 234
virtual directories, 413–418
Visual Basic

arguments, 28
Booleans, 52
classes, 21
CType method, 123
event handlers, 28
If-Then statements, 121
installing, 409
methods, 28
parameters, 28
strings, 50
underscore character, 12
use of, 3
variables, 28, 50

Visual Studio 2005, 407–410
Visual Web Developer (see VWD)
VWD (Visual Web Developer), 402–407

W
Warn method, 256, 259
WAT (Web Site Administrative

Tool), 283–289
Watch window, 270
WatermarkCssClass property, 74
watermarks, adding, 72–76
WatermarkText property, 74
Web Forms, adding, 186
web pages

controls, adding, 8–13
debugging, 250, 259

breakpoints, 261–266

498 | Index

web pages (continued)
Debug toolbar, 260
stepping through code, 266
windows, 268–271

life cycles, 221–227
master pages, applying, 343–346
overview of, 17
processing, 18
security

forms-based, 282
WAT, 283–289

state, 227
application, 244
session, 238–244
view, 228–238

styles, applying, 170–180
tracing, 250, 253

inserting trace logs, 256–259
page-level, 254–256

Web Site Administrative Tool (see WAT)
web sites

AJAX, adding, 363
Cart page, 365–368

source code, 379–381
Confirm page, 375–378

source code, 382–383
copying

with the IDE, 419–424
without using the IDE, 418
virtual directories, 413–418

creating, 2–5
custom error pages, adding, 377
Home pages, source code, 384
hosting, 5
image controls, 51–52
link controls, 52
LinkButton controls, 53
login, 348–351
Login page source code, 385
navigating, 196–213, 351–353
personalization, 304

anonymous, 314–321
profiles, 304–315

Products page, 354–364
source code, 388–392

Purchase page, 368–375
source code, 392–397

roles, configuring, 346–348
style sheets, 35
styles, adding, 340–343
themes, 321–331

web.config file
anonymous personalization, 315
complex data types, profiles, 310
connection strings, saving, 103
debugging, 260
debugging, configuring, 10
error pages, 273
profiles, 304
source code, 397–400
WAT, 286

welcome pages, creating, 290–292
well-known ports, 298
When Breakpoint Is Hit dialog box, 266
WHERE clause, 125
whitespace, 224
windows

Breakpoint, 261
Call Stack, 271
Computer Management, 414
Debug, 268–271
Immediate, 268
Locals, 270
pinning, 8
Properties, organizing, 32
Watch, 270

wizards
Configure Data Source, 102, 113
Configure Select Statement, 128
CreateUserWizard control, 289
Insert Table, 48
WAT, 283–289

World Wide Web architecture, 221
wrapping panels, 71
Write method, 256
writing to Trace objects, 257

Z
Zanevsky, Andrew, 362

About the Authors
Jesse Liberty, Microsoft .NET MVP, is the best-selling author of O’Reilly Media’s
Programming ASP.NET, Programming C#, Programming Visual Basic 2005, and over
a dozen other books on web and object-oriented programming. He is president of
Liberty Associates, Inc., where he provides contract programming, consulting, and
on-site training in .NET.

Jesse is a frequent contributor to O’Reilly Network web sites, as well as many industry
publications, and he has spoken at numerous events. He is a former Distinguished Soft-
ware Engineer at AT&T, and Vice President for technology development at CitiBank.

Dan Hurwitz is the president of Sterling Solutions, Inc., where for nearly two
decades he has been providing contract programming and database development to a
wide variety of clients. He has coauthored three editions of Programming ASP.NET.

Brian MacDonald is an editor of programming and networking books. He has edited
books for several major publishers on topics ranging from securing Windows servers
to PHP web programming to running an eBay business. His work for O’Reilly
includes Programming WCF Services and Programming ASP.NET. He also coau-
thored Learning C# 2005 with Jesse Liberty. He lives in southeastern Pennsylvania
with his wife and son.

Colophon
The animal on the cover of Learning ASP.NET 2.0 with AJAX is a pelagic stingray
(Pteroplaytrygon violacea). The pelagic stingary is found worldwide in temperate to
tropical seas, in both open bays and deep ocean waters. While many other varieties
of rays live near the sandy ocean floor, the pelagic stingray primarily swims in open
water. It has many small sharp teeth and is sometimes seen feeding upside-down or
using its pectoral fins to push food into its mouth. It eats crustaceans, jellyfish,
octopus, squid, and small fish such as mackerel and herring.

Pelagic stingrays can grow up to five feet long and almost three feet wide. This is
small relative to other rays, which can be as long as 14 feet, yet is substantial enough
that its only predators are large marine creature, such as hammerhead and oceanic
whitetip sharks. Its coloring, dark purple or gray on top with a paler underside,
serves to camouflage the stingray from predators above. The pelagic stingray wards
off these predators with serrated, venomous spines, which protrude about one-third
of the way down its tail.

Pups, or baby stingrays, are born in small litters after a two- to four-month gesta-
tional period. At birth, they are between 6 and 10 inches long, and they are able to
feed and take care of themselves. Though pelagic stingrays are often caught uninten-
tionally in fishing nets, they are not currently endangered, and some scientists have
noted a recent increase in pelagic stingray populations.

The cover image is from Dover’s Animals. The cover font is Adobe ITC Garamond.
The text font is Linotype Birka; the heading font is Adobe Myriad Condensed; and
the code font is LucasFont’s TheSans Mono Condensed.

	Learning ASP.NET 2.0 with AJAX
	Table of Contents
	Cheat Sheets
	Preface
	About This Book
	About This Series
	Learning or Programming?
	VB Versus C#
	How This Book Is Organized
	Conventions Used in This Book
	Support: A Note from Jesse Liberty
	Using Code Examples
	We’d Like to Hear from You
	Safari® Books Online
	Acknowledgments
	From Jesse Liberty
	From Dan Hurwitz
	From Brian MacDonald

	Getting Started
	Hello World
	Creating a New Web Site
	Creating HelloWorld
	Making the HelloWorld Web Site Interactive
	What You Just Did
	Summary

	Building Web Applications
	Mastering Web Site Fundamentals
	The Page
	Controls
	Code-Behind Files
	Events and Postbacks
	Synchronous and Asynchronous Postbacks
	The Page Load event and synchronous postback
	Adding asynchronous postbacks

	Controls
	Organizing the Properties Window
	Finding properties with IntelliSense

	Basic Controls
	Creating Tables
	Setting Properties
	Selection Controls
	Panels
	Selection Controls
	Adding controls with the Item editor
	Adding items in Source View

	More Selection Controls
	Displaying Text
	Images
	Links
	LinkButtons

	Source Code
	Summary

	Snappier Web Sites with AJAX
	Take a Walk on the Client Side
	ScriptManager
	Extending Controls with the Control Toolkit
	TextBoxWaterMarkExtender
	PopupControlExtender
	CollapsiblePanelExtender

	Source Code Listing
	Summary

	Saving and Retrieving Data
	Getting Data from a Database
	Binding Data Controls
	Create a Sample Web Page
	Using a DataSource Control
	“Pay No Attention to That Man Behind the Curtain”
	Using the GridView Control
	Auto-Generated Code
	Adding Insert, Update, and Delete Statements

	Displaying and Updating the Data
	Take It for a Spin
	Modifying the Grid Based on Events
	Selecting Data from the GridView
	Passing Parameters to the SELECT Query

	Source Code Listings
	Summary

	Validation
	Validation Controls
	The RequiredFieldValidator
	The Summary Control
	The Compare Validator
	Checking the Input Type
	Comparing to Another Control

	Range Checking
	Regular Expressions
	Custom Validation
	Summary

	Style Sheets, Master Pages, and Navigation
	Styles and Style Sheets
	Cascading Style Sheets
	Inline Styles
	Pros and cons

	Document-Level Styles
	Pros and cons

	External Style Sheets

	Master Pages
	Creating a Master Page
	Adding Content Pages
	Using Nested Master Pages
	Changing the Master Page at Runtime

	Navigation
	Buttons and HyperLinks
	Menus and Bread Crumbs
	Site Maps
	Using Sitemaps
	TreeView
	Customizing the look and feel of the TreeView
	Replacing the TreeView with a menu control
	Accessing site map nodes programmatically

	Bread Crumbs

	Summary

	State and Life Cycle
	Page Life Cycle
	State
	View State
	Session State
	Application State

	Summary
	Quiz
	Exercises

	Errors, Exceptions, and Bugs, Oh My!
	Creating the Sample Application
	Tracing
	Page-Level Tracing
	Inserting into the Trace Log

	Debugging
	The Debug Toolbar
	Breakpoints
	Setting a breakpoint
	Breakpoint window
	Breakpoint properties
	Breakpoint icons

	Stepping Through Code
	Examining Variables and Objects
	Debug Windows
	Immediate window
	Locals window
	Watch window
	Call Stack window

	Error Handling
	Unhandled Errors
	Application-Wide Error Pages
	Page-Specific Error Pages

	Summary

	Security and Personalization
	Forms-Based Security
	Creating Users with the WAT
	Managing Users Programmatically
	Creating user accounts
	Creating a welcome page
	Creating a login page

	Roles
	Restricting Access
	Testing for login status
	Testing for role-based authentication membership

	Personalization
	Profiles
	Simple data types
	Complex data types

	Anonymous Personalization
	Migrating anonymous data to an actual user’s record

	Themes and Skins
	Create the Test Site
	Organize Site Themes and Skins
	Enable Themes and Skins
	Specify Themes for Your Page
	Using Named Skins

	Summary

	Putting It All Together
	Getting Started
	Adding Styles
	Using Master Pages
	Setting Up Roles and Users
	Logging In
	Navigation
	Products Page
	Adding AJAX
	Cart Page
	Purchase Page
	Confirm Page
	Custom Error Pages
	Summary
	Source Code Listings
	Cart Page
	Confirm Page
	Home Page
	Login Page
	Master Page
	Products Page
	Purchase Page
	Web.config

	Installing the Applications
	What Hardware and Software You’ll Need
	Visual Web Developer (VWD)
	Installing VWD
	Configuring SQL Express
	Using the AdventureWorks Sample Database

	Visual Studio 2005
	Installing Visual Studio 2005

	ASP.NET AJAX

	Copying a Web Site
	Virtual Directories
	Outside the IDE
	Inside the IDE

	Copying the Web Site Without Using the IDE
	Copying the Web Site with the IDE

	Answers to Quizzes and Exercises
	Chap�ter�1: Getting Started
	Answers to Quiz Questions
	Answers to Exercises

	Chap�ter�2: Building Web Applications
	Answers to Quiz Questions
	Answers to Exercises

	Chap�ter�3: Snappier Web Sites with AJAX
	Answers to Quiz Questions
	Answers to Exercises

	Chap�ter�4: Saving and Retrieving Data
	Answers to Quiz Questions
	Answers to Exercises

	Chap�ter�5: Validation
	Answers to Quiz Questions
	Answers to Exercises

	Chap�ter�6: Style Sheets, Master Pages, and Navigation
	Answers to Quiz Questions
	Answers to Exercises

	Chap�ter�7: State and Life Cycle
	Answers to Quiz Questions
	Answers to Exercises

	Chap�ter�8: Errors, Exceptions, and Bugs, Oh My!
	Answers to Quiz Questions
	Answers to Exercises

	Chap�ter�9: Security and Personalization
	Answer to Quiz Questions
	Answers to Exercises

	Index

